![人教A版高三一輪復(fù)習(xí)教案39兩角和與差的三角函數(shù)教案_第1頁](http://file4.renrendoc.com/view/ec6a7fcd842ed787951013ff7d290f4e/ec6a7fcd842ed787951013ff7d290f4e1.gif)
![人教A版高三一輪復(fù)習(xí)教案39兩角和與差的三角函數(shù)教案_第2頁](http://file4.renrendoc.com/view/ec6a7fcd842ed787951013ff7d290f4e/ec6a7fcd842ed787951013ff7d290f4e2.gif)
![人教A版高三一輪復(fù)習(xí)教案39兩角和與差的三角函數(shù)教案_第3頁](http://file4.renrendoc.com/view/ec6a7fcd842ed787951013ff7d290f4e/ec6a7fcd842ed787951013ff7d290f4e3.gif)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
教案39兩角和與差的三角函數(shù)(1)一、課前檢測1.設(shè)tan(5π+α)=m,則eq\f(sin(α-3π)+cos(π-α),sin(-α)-cos(π+α))的值為__________.解析eq\f(sin(α-3π)+cos(π-α),sin(-α)-cos(π+α))=eq\f(sin(-4π+π+α)-cosα,-sinα+cosα)=eq\f(sin(π+α)-cosα,-sinα+cosα)=eq\f(-sinα-cosα,-sinα+cosα)=eq\f(sinα+cosα,sinα-cosα)=eq\f(tanα+1,tanα-1).又tan(5π+α)=m,∴tan(π+α)=m,tanα=m,∴原式=eq\f(m+1,m-1).答案eq\f(m+1,m-1)2.已知eq\f(sinα+cosα,sinα-cosα)=2,則sinαcosα=________.解析由已知得:sinα+cosα=2(sinα-cosα),平方得:1+2sinαcosα=4-8sinαcosα,∴sinαcosα=eq\f(3,10).答案eq\f(3,10)3.已知0<α<eq\f(π,2),若cosα-sinα=-eq\f(\r(5),5),試求eq\f(2sinαcosα-cosα+1,1-tanα)的值.解∵cosα-sinα=-eq\f(\r(5),5),∴1-2sinα·cosα=eq\f(1,5),∴2sinα·cosα=eq\f(4,5),∴(sinα+cosα)2=1+2sinαcosα=1+eq\f(4,5)=eq\f(9,5).∵0<α<eq\f(π,2),∴sinα+cosα=eq\f(3,5)eq\r(5),與cosα-sinα=-eq\f(\r(5),5)聯(lián)立解得:cosα=eq\f(\r(5),5),sinα=eq\f(2,5)eq\r(5).∴eq\f(2sinαcosα-cosα+1,1-tanα)=eq\f(cosα(2sinαcosα-cosα+1),cosα-sinα)=eq\f(\f(\r(5),5)×\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,5)-\f(\r(5),5)+1)),-\f(\r(5),5))=eq\f(\r(5),5)-eq\f(9,5).二、知識梳理1.兩角和與差的正弦、余弦、正切公式;;.解讀:2.常見的角的變換:;解讀:三、典型例題分析例1.等于()AA.-B.C.-D.變式訓(xùn)練已知∈(,),sin=,則tan()等于()A.B.7C.-D.-7小結(jié)與拓展:例2.已知α(,),β(0,),(α-)=,sin(+β)=,求sin(α+β)的值.解:∵α-++β=α+β+α∈()β∈(0,)∴α-∈(0,)β+∈(,π)∴sin(α-)=cos()=-∴sin(α+β)=-cos[+(α+β)]=-cos[(α-)+()]=變式訓(xùn)練:設(shè)cos(-)=-,sin(-β)=,且<<π,0<β<,求cos(+β).解:∵<<π,0<β<,∴<α-<π,-<-β<.故由cos(-)=-,得sin(α-)=.由sin(-β)=,得cos(-β)=.∴cos=cos[(-)-(-β)]==∴cos(+β)=2cos2-1=-1=-.小結(jié)與拓展:例3.若sinA=,sinB=,且A,B均為鈍角,求A+B的值.解∵A、B均為鈍角且sinA=,sinB=,∴cosA=-=-=-,cosB=-=-=-,∴cos(A+B)=cosAcosB-sinAsinB=×-×=①又∵<A<,<B<∴<A+B<2 ②由①②知,A+B=.變式訓(xùn)練:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘇科版數(shù)學(xué)九年級上冊《根的判別式》聽評課記錄2
- 生物技術(shù)數(shù)據(jù)共享合同(2篇)
- 理發(fā)協(xié)議書(2篇)
- 統(tǒng)編版初中語文七年級下冊第十六課《最苦與最樂》聽評課記錄
- 五年級下冊數(shù)學(xué)聽評課記錄《6體積和體積單位》人教新課標
- 吉林省七年級數(shù)學(xué)下冊第8章一元一次不等式8.2解一元一次不等式8.2.1不等式的解集聽評課記錄新版華東師大版
- 人教版數(shù)學(xué)七年級上冊1.4《有理數(shù)的除法》(第1課時)聽評課記錄
- 2022年新課標八年級上冊道德與法治《9.2 維護國家安全 》聽課評課記錄
- 人教版數(shù)學(xué)八年級上冊《探究分式的基本性質(zhì)》聽評課記錄2
- 小學(xué)數(shù)學(xué)蘇教版六年級上冊《分數(shù)四則混合運算》聽評課記錄
- 福建省泉州市晉江市2024-2025學(xué)年七年級上學(xué)期期末生物學(xué)試題(含答案)
- 醫(yī)美注射類知識培訓(xùn)課件
- 2025年春新人教版物理八年級下冊課件 第十章 浮力 第4節(jié) 跨學(xué)科實踐:制作微型密度計
- 2025年廣電網(wǎng)絡(luò)公司工作計劃(3篇)
- 貨運車輛駕駛員服務(wù)標準化培訓(xùn)考核試卷
- 財務(wù)BP經(jīng)營分析報告
- 三年級上冊體育課教案
- 2024高考物理二輪復(fù)習(xí)電學(xué)實驗專項訓(xùn)練含解析
- 2024年全國統(tǒng)一高考英語試卷(新課標Ⅰ卷)含答案
- 2022屆“一本、二本臨界生”動員大會(2023.5)
- 安全生產(chǎn)十大法則及安全管理十大定律
評論
0/150
提交評論