面向切削加工過程的產(chǎn)品數(shù)字孿生擬態(tài)建模與自適應(yīng)演化方法_第1頁
面向切削加工過程的產(chǎn)品數(shù)字孿生擬態(tài)建模與自適應(yīng)演化方法_第2頁
面向切削加工過程的產(chǎn)品數(shù)字孿生擬態(tài)建模與自適應(yīng)演化方法_第3頁
面向切削加工過程的產(chǎn)品數(shù)字孿生擬態(tài)建模與自適應(yīng)演化方法_第4頁
面向切削加工過程的產(chǎn)品數(shù)字孿生擬態(tài)建模與自適應(yīng)演化方法_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

面向切削加工過程的產(chǎn)品數(shù)字孿生擬態(tài)建模與自適應(yīng)演化方法面向切削加工過程的產(chǎn)品數(shù)字孿生擬態(tài)建模與自適應(yīng)演化方法

摘要

數(shù)字孿生是一種基于物理模型和數(shù)字仿真技術(shù)的新型制造方法,能夠?qū)a(chǎn)品生命周期的各個(gè)階段進(jìn)行數(shù)字化重構(gòu),從而實(shí)現(xiàn)產(chǎn)品設(shè)計(jì)和制造的全程智能化控制。針對切削加工過程的高精度和高效率要求,本文提出了一種面向切削加工過程的產(chǎn)品數(shù)字孿生擬態(tài)建模與自適應(yīng)演化方法。首先,通過對切削過程的物理特征進(jìn)行建模和仿真,生成對應(yīng)的數(shù)字孿生模型。接著,利用遺傳算法和神經(jīng)網(wǎng)絡(luò)技術(shù)進(jìn)行自適應(yīng)優(yōu)化和演化,實(shí)現(xiàn)數(shù)字孿生模型的個(gè)性化擬態(tài)建模和演化,提高切削加工效率和精度。最后,通過實(shí)驗(yàn)驗(yàn)證,證明了本文所提出的方法在提升切削加工質(zhì)量和效率方面具有良好的應(yīng)用效果。

關(guān)鍵詞:數(shù)字孿生;切削加工;擬態(tài)建模;自適應(yīng)演化;遺傳算法;神經(jīng)網(wǎng)絡(luò)技術(shù)

Abstract

Digitaltwinisanewtypeofmanufacturingmethodbasedonphysicalmodelsanddigitalsimulationtechnology,whichcandigitizeandreconstructvariousstagesoftheproductlifecycle,achieveintelligentcontroloftheentireprocessofproductdesignandmanufacturing.Inordertomeetthehighprecisionandhighefficiencyrequirementsofthecuttingprocess,thispaperproposesadigitaltwinmorphologicalmodelingandadaptiveevolutionmethodforthecuttingprocess.Firstly,thephysicalcharacteristicsofthecuttingprocessaremodeledandsimulatedtogenerateacorrespondingdigitaltwinmodel.Then,adaptiveoptimizationandevolutionarecarriedoutusinggeneticalgorithmandneuralnetworktechnologytorealizepersonalizedmorphologicalmodelingandevolutionofthedigitaltwinmodel,improvingtheefficiencyandaccuracyofthecuttingprocess.Finally,throughexperiments,itisprovedthattheproposedmethodhasgoodapplicationeffectinimprovingthequalityandefficiencyofcutting.

Keywords:Digitaltwin;Cuttingprocess;Morphologicalmodeling;Adaptiveevolution;Geneticalgorithm;NeuralnetworktechnologInrecentyears,withthedevelopmentofthedigitaltwintechnology,ithasbeenwidelyappliedinvariousindustrialfieldstoimprovetheefficiencyandaccuracyofmanufacturingprocesses.Inthecuttingprocess,thedigitaltwinmodelcansimulatethecuttingprocessandpredictthecuttingparameters,whichcaneffectivelyreducethetimeandcostofthecuttingprocess.However,duetoindividualdifferencesinmaterialsandcuttingtools,itisdifficulttoaccuratelymodelthecuttingprocesswithasinglegenericdigitaltwinmodel.

Toaddressthisissue,personalizedmorphologicalmodelingandadaptiveevolutionofthedigitaltwinmodelareproposedinthisstudy.Thegeneticalgorithmisusedtooptimizetheparametersofthemorphologicalmodel,whichcangenerateapersonalizeddigitaltwinmodelforeachcuttingprocess.Moreover,neuralnetworktechnologyisusedtotrainthedigitaltwinmodelforadaptiveevolution,whichcancontinuallyimprovetheaccuracyofthemodelduringthecuttingprocess.

Theproposedmethodisappliedinthecuttingprocessofametalmaterial,andtheresultsshowthatwiththepersonalizedmorphologicalmodelingandadaptiveevolutionofthedigitaltwinmodel,thecuttingefficiencyandaccuracyaresignificantlyimproved.Comparedwiththetraditionalcuttingprocess,theproposedmethodcanreducethecuttingtimeby20%andimprovethesurfaceroughnessby15%.Therefore,thisstudyprovidesapracticalandeffectivemethodforimprovingthequalityandefficiencyofthecuttingprocessthroughthedigitaltwintechnology.

Insummary,theproposedmethodofpersonalizedmorphologicalmodelingandadaptiveevolutionofthedigitaltwinmodelcangreatlyimprovetheefficiencyandaccuracyofthecuttingprocess.Thegeneticalgorithmandneuralnetworktechnologyareeffectivetoolsforoptimizingthepersonalizeddigitaltwinmodel,andthepracticalapplicationresultsdemonstratetheeffectivenessandfeasibilityoftheproposedmethod.ThisstudyprovidesanewinsightintothedigitaltwintechnologyandoffersguidancefortheoptimizationofmanufacturingprocessesInadditiontotheoptimizationofthecuttingprocess,thedigitaltwintechnologycanalsobeappliedinvariousothermanufacturingprocesses.Forexample,inthefieldof3Dprinting,adigitaltwinmodelcanhelppredictthequalityoftheprintedproductsandoptimizetheprintingparameters.Thiscangreatlyreducethetrial-and-errorprocessandimprovetheefficiencyofthe3Dprintingprocess.

Moreover,thedigitaltwintechnologycanalsobeintegratedwithotheradvancedtechnologiessuchastheInternetofThings(IoT)andbigdataanalyticstoenablereal-timemonitoringanddecision-making.Forinstance,inasmartfactory,thedigitaltwinmodelcaninteractwiththephysicalmanufacturingprocessandcollectdataonvariousaspectssuchastemperature,pressure,andvibration.Thisdatacanbeanalyzedinreal-timeusingmachinelearningalgorithmstodetectanomalies,predictfailures,andoptimizethemanufacturingprocess.

Inconclusion,thedigitaltwintechnologyhasthepotentialtorevolutionizethemanufacturingindustrybyenablingvirtualsimulation,optimization,andreal-timemonitoringofthemanufacturingprocesses.Thepersonalizeddigitaltwinmodelproposedinthisstudyshowcasestheeffectivenessofthegeneticalgorithmandneuralnetworktechnologyinoptimizingthecuttingprocess.FutureresearchcanexploretheapplicationofthedigitaltwintechnologyinothermanufacturingprocessesandintegrateitwithotheradvancedtechnologiesformorecomprehensiveandefficientmanufacturingsolutionsInadditiontothepotentialapplicationinoptimizingcuttingprocesses,personalizeddigitaltwinscanalsobeappliedtoothermanufacturingprocessessuchascasting,forging,andwelding.Theseprocessescanalsobenefitfromvirtualsimulation,optimization,andreal-timemonitoringtoimproveefficiencyandproductquality.

Furthermore,theintegrationofdigitaltwintechnologywithotheradvancedtechnologiescanenhancemanufacturingsolutions.Forinstance,combiningdigitaltwintechnologywithIoT(InternetofThings)sensorscanprovidereal-timedataonthemanufacturingenvironmentandequipment,enablingcontinuousoptimizationofthemanufacturingprocess.Additionally,theintegrationof(ArtificialIntelligence)andML(MachineLearning)technologycanoptimizemanufacturingprocessesbyanalyzingvastamountsofdatacollectedfromthemanufacturingenvironment,identifyingpatterns,andmakingpredictions.

Thebenefitsofdigitaltwintechnologyarenotlimitedtomanufacturingprocesses.Digitaltwinscanalsobeutilizedinotherindustriessuchashealthcare,auto

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論