![面向切削加工過程的產(chǎn)品數(shù)字孿生擬態(tài)建模與自適應(yīng)演化方法_第1頁](http://file4.renrendoc.com/view/a8cf09346622cd24720f36f3e42f02a9/a8cf09346622cd24720f36f3e42f02a91.gif)
![面向切削加工過程的產(chǎn)品數(shù)字孿生擬態(tài)建模與自適應(yīng)演化方法_第2頁](http://file4.renrendoc.com/view/a8cf09346622cd24720f36f3e42f02a9/a8cf09346622cd24720f36f3e42f02a92.gif)
![面向切削加工過程的產(chǎn)品數(shù)字孿生擬態(tài)建模與自適應(yīng)演化方法_第3頁](http://file4.renrendoc.com/view/a8cf09346622cd24720f36f3e42f02a9/a8cf09346622cd24720f36f3e42f02a93.gif)
![面向切削加工過程的產(chǎn)品數(shù)字孿生擬態(tài)建模與自適應(yīng)演化方法_第4頁](http://file4.renrendoc.com/view/a8cf09346622cd24720f36f3e42f02a9/a8cf09346622cd24720f36f3e42f02a94.gif)
![面向切削加工過程的產(chǎn)品數(shù)字孿生擬態(tài)建模與自適應(yīng)演化方法_第5頁](http://file4.renrendoc.com/view/a8cf09346622cd24720f36f3e42f02a9/a8cf09346622cd24720f36f3e42f02a95.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
面向切削加工過程的產(chǎn)品數(shù)字孿生擬態(tài)建模與自適應(yīng)演化方法面向切削加工過程的產(chǎn)品數(shù)字孿生擬態(tài)建模與自適應(yīng)演化方法
摘要
數(shù)字孿生是一種基于物理模型和數(shù)字仿真技術(shù)的新型制造方法,能夠?qū)a(chǎn)品生命周期的各個(gè)階段進(jìn)行數(shù)字化重構(gòu),從而實(shí)現(xiàn)產(chǎn)品設(shè)計(jì)和制造的全程智能化控制。針對切削加工過程的高精度和高效率要求,本文提出了一種面向切削加工過程的產(chǎn)品數(shù)字孿生擬態(tài)建模與自適應(yīng)演化方法。首先,通過對切削過程的物理特征進(jìn)行建模和仿真,生成對應(yīng)的數(shù)字孿生模型。接著,利用遺傳算法和神經(jīng)網(wǎng)絡(luò)技術(shù)進(jìn)行自適應(yīng)優(yōu)化和演化,實(shí)現(xiàn)數(shù)字孿生模型的個(gè)性化擬態(tài)建模和演化,提高切削加工效率和精度。最后,通過實(shí)驗(yàn)驗(yàn)證,證明了本文所提出的方法在提升切削加工質(zhì)量和效率方面具有良好的應(yīng)用效果。
關(guān)鍵詞:數(shù)字孿生;切削加工;擬態(tài)建模;自適應(yīng)演化;遺傳算法;神經(jīng)網(wǎng)絡(luò)技術(shù)
Abstract
Digitaltwinisanewtypeofmanufacturingmethodbasedonphysicalmodelsanddigitalsimulationtechnology,whichcandigitizeandreconstructvariousstagesoftheproductlifecycle,achieveintelligentcontroloftheentireprocessofproductdesignandmanufacturing.Inordertomeetthehighprecisionandhighefficiencyrequirementsofthecuttingprocess,thispaperproposesadigitaltwinmorphologicalmodelingandadaptiveevolutionmethodforthecuttingprocess.Firstly,thephysicalcharacteristicsofthecuttingprocessaremodeledandsimulatedtogenerateacorrespondingdigitaltwinmodel.Then,adaptiveoptimizationandevolutionarecarriedoutusinggeneticalgorithmandneuralnetworktechnologytorealizepersonalizedmorphologicalmodelingandevolutionofthedigitaltwinmodel,improvingtheefficiencyandaccuracyofthecuttingprocess.Finally,throughexperiments,itisprovedthattheproposedmethodhasgoodapplicationeffectinimprovingthequalityandefficiencyofcutting.
Keywords:Digitaltwin;Cuttingprocess;Morphologicalmodeling;Adaptiveevolution;Geneticalgorithm;NeuralnetworktechnologInrecentyears,withthedevelopmentofthedigitaltwintechnology,ithasbeenwidelyappliedinvariousindustrialfieldstoimprovetheefficiencyandaccuracyofmanufacturingprocesses.Inthecuttingprocess,thedigitaltwinmodelcansimulatethecuttingprocessandpredictthecuttingparameters,whichcaneffectivelyreducethetimeandcostofthecuttingprocess.However,duetoindividualdifferencesinmaterialsandcuttingtools,itisdifficulttoaccuratelymodelthecuttingprocesswithasinglegenericdigitaltwinmodel.
Toaddressthisissue,personalizedmorphologicalmodelingandadaptiveevolutionofthedigitaltwinmodelareproposedinthisstudy.Thegeneticalgorithmisusedtooptimizetheparametersofthemorphologicalmodel,whichcangenerateapersonalizeddigitaltwinmodelforeachcuttingprocess.Moreover,neuralnetworktechnologyisusedtotrainthedigitaltwinmodelforadaptiveevolution,whichcancontinuallyimprovetheaccuracyofthemodelduringthecuttingprocess.
Theproposedmethodisappliedinthecuttingprocessofametalmaterial,andtheresultsshowthatwiththepersonalizedmorphologicalmodelingandadaptiveevolutionofthedigitaltwinmodel,thecuttingefficiencyandaccuracyaresignificantlyimproved.Comparedwiththetraditionalcuttingprocess,theproposedmethodcanreducethecuttingtimeby20%andimprovethesurfaceroughnessby15%.Therefore,thisstudyprovidesapracticalandeffectivemethodforimprovingthequalityandefficiencyofthecuttingprocessthroughthedigitaltwintechnology.
Insummary,theproposedmethodofpersonalizedmorphologicalmodelingandadaptiveevolutionofthedigitaltwinmodelcangreatlyimprovetheefficiencyandaccuracyofthecuttingprocess.Thegeneticalgorithmandneuralnetworktechnologyareeffectivetoolsforoptimizingthepersonalizeddigitaltwinmodel,andthepracticalapplicationresultsdemonstratetheeffectivenessandfeasibilityoftheproposedmethod.ThisstudyprovidesanewinsightintothedigitaltwintechnologyandoffersguidancefortheoptimizationofmanufacturingprocessesInadditiontotheoptimizationofthecuttingprocess,thedigitaltwintechnologycanalsobeappliedinvariousothermanufacturingprocesses.Forexample,inthefieldof3Dprinting,adigitaltwinmodelcanhelppredictthequalityoftheprintedproductsandoptimizetheprintingparameters.Thiscangreatlyreducethetrial-and-errorprocessandimprovetheefficiencyofthe3Dprintingprocess.
Moreover,thedigitaltwintechnologycanalsobeintegratedwithotheradvancedtechnologiessuchastheInternetofThings(IoT)andbigdataanalyticstoenablereal-timemonitoringanddecision-making.Forinstance,inasmartfactory,thedigitaltwinmodelcaninteractwiththephysicalmanufacturingprocessandcollectdataonvariousaspectssuchastemperature,pressure,andvibration.Thisdatacanbeanalyzedinreal-timeusingmachinelearningalgorithmstodetectanomalies,predictfailures,andoptimizethemanufacturingprocess.
Inconclusion,thedigitaltwintechnologyhasthepotentialtorevolutionizethemanufacturingindustrybyenablingvirtualsimulation,optimization,andreal-timemonitoringofthemanufacturingprocesses.Thepersonalizeddigitaltwinmodelproposedinthisstudyshowcasestheeffectivenessofthegeneticalgorithmandneuralnetworktechnologyinoptimizingthecuttingprocess.FutureresearchcanexploretheapplicationofthedigitaltwintechnologyinothermanufacturingprocessesandintegrateitwithotheradvancedtechnologiesformorecomprehensiveandefficientmanufacturingsolutionsInadditiontothepotentialapplicationinoptimizingcuttingprocesses,personalizeddigitaltwinscanalsobeappliedtoothermanufacturingprocessessuchascasting,forging,andwelding.Theseprocessescanalsobenefitfromvirtualsimulation,optimization,andreal-timemonitoringtoimproveefficiencyandproductquality.
Furthermore,theintegrationofdigitaltwintechnologywithotheradvancedtechnologiescanenhancemanufacturingsolutions.Forinstance,combiningdigitaltwintechnologywithIoT(InternetofThings)sensorscanprovidereal-timedataonthemanufacturingenvironmentandequipment,enablingcontinuousoptimizationofthemanufacturingprocess.Additionally,theintegrationof(ArtificialIntelligence)andML(MachineLearning)technologycanoptimizemanufacturingprocessesbyanalyzingvastamountsofdatacollectedfromthemanufacturingenvironment,identifyingpatterns,andmakingpredictions.
Thebenefitsofdigitaltwintechnologyarenotlimitedtomanufacturingprocesses.Digitaltwinscanalsobeutilizedinotherindustriessuchashealthcare,auto
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療護(hù)理醫(yī)學(xué)培訓(xùn) 小學(xué)二年級健康課課件
- DB 3705T 49-2024黃河口灘區(qū)肉羊疫病防控技術(shù)規(guī)范
- 中央空調(diào)清洗保養(yǎng)合同
- 個(gè)人股份代持合同范本
- 二手房交易獨(dú)家代理合同范本
- 業(yè)務(wù)員勞動(dòng)合同樣本集
- 臨時(shí)雇傭合同書樣本
- 個(gè)人向公司借款合同細(xì)則
- 個(gè)人果園承包合同轉(zhuǎn)讓協(xié)議模板
- 上海市跨境電商合作協(xié)議合同范本
- 中國電信應(yīng)急管理整體解決方案
- 中小學(xué)教師師德師風(fēng)法律法規(guī)培訓(xùn)
- 醫(yī)療器械質(zhì)量管理體系文件模板
- 秦始皇嬴政人物生平介紹PPT
- 在馬克思墓前的講話說課稿公開課一等獎(jiǎng)市賽課獲獎(jiǎng)?wù)n件
- 骨科無痛病房的建立
- 送養(yǎng)收養(yǎng)合同協(xié)議書
- 塑料成型模具設(shè)計(jì)(第2版)江昌勇課件0-導(dǎo)論
- 漢語拼音發(fā)音口型及配圖
- 績效考核管理醫(yī)院績效分配方案包括實(shí)施細(xì)則考核表
- 大學(xué)成績單(大專)
評論
0/150
提交評論