山東省濟南市平陰縣第一中學2022-2023學年數(shù)學高一第二學期期末教學質量檢測模擬試題含解析_第1頁
山東省濟南市平陰縣第一中學2022-2023學年數(shù)學高一第二學期期末教學質量檢測模擬試題含解析_第2頁
山東省濟南市平陰縣第一中學2022-2023學年數(shù)學高一第二學期期末教學質量檢測模擬試題含解析_第3頁
山東省濟南市平陰縣第一中學2022-2023學年數(shù)學高一第二學期期末教學質量檢測模擬試題含解析_第4頁
山東省濟南市平陰縣第一中學2022-2023學年數(shù)學高一第二學期期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.點關于直線對稱的點的坐標是()A. B. C. D.2.已知等差數(shù)列的前項和,若,則()A.25 B.39 C.45 D.543.已知數(shù)列滿足,則()A.10 B.20 C.100 D.2004.若直線與直線互相平行,則的值為()A.4 B. C.5 D.5.如圖是正方體的展開圖,則在這個正方體中:①與平行;②與是異面直線;③與成60°角;④與垂直.以上四個命題中,正確命題的序號是A.①②③ B.②④ C.③④ D.②③④6.已知M為z軸上一點,且點M到點與點的距離相等,則點M的坐標為()A. B. C. D.7.在△ABC中角ABC的對邊分別為A.B.c,cosC=,且acosB+bcosA=2,則△ABC面積的最大值為()A. B. C. D.8.執(zhí)行如圖所示的程序框圖,則輸出的值是()A. B. C. D.9.把函數(shù),圖象上所有的點向右平行移動個單位長度,橫坐標伸長到原來的2倍,所得圖象對應的函數(shù)為()A. B.C. D.10.邊長為的正方形中,點是的中點,點是的中點,將分別沿折起,使兩點重合于,則直線與平面所成角的正弦值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,為了測量樹木的高度,在處測得樹頂?shù)难鼋菫椋谔帨y得樹頂?shù)难鼋菫?,若米,則樹高為______米.12.已知公式,,借助這個公式,我們可以求函數(shù)的值域,則該函數(shù)的值域是______.13.不等式有解,則實數(shù)的取值范圍是______.14.已知數(shù)列的前項和為,則其通項公式__________.15.已知(),則________.(用表示)16.函數(shù)在內的單調遞增區(qū)間為____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求的最小正周期;(2)求在區(qū)間上的最大值和最小值,并分別寫出相應的的值.18.已知函數(shù)(,)為奇函數(shù),且相鄰兩對稱軸間的距離為.(1)當時,求的單調遞減區(qū)間;(2)將函數(shù)的圖象沿軸方向向右平移個單位長度,再把橫坐標縮短到原來的(縱坐標不變),得到函數(shù)的圖象.當時,求函數(shù)的值域.19.已知數(shù)列滿足,.(1)求證:數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;(2)令,求數(shù)列的前項和.20.如圖,在四棱錐P~ABCD中,底面ABCD為矩形,E,F(xiàn)分別為AD,PB的中點,PE⊥平面ABCD,AP⊥DP,AP=DP.(1)求證:EF∥平面PCD;(2)設G為AB中點,求證:平面EFG⊥平面PCD.21.如圖1,已知菱形的對角線交于點,點為線段的中點,,,將三角形沿線段折起到的位置,,如圖2所示.(Ⅰ)證明:平面平面;(Ⅱ)求三棱錐的體積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

設點關于直線對稱的點為,根據(jù)斜率關系和中點坐標公式,列出方程組,即可求解.【詳解】由題意,設點關于直線對稱的點為,則,解得,即點關于直線對稱的點為,故選A.【點睛】本題主要考查了點關于直線的對稱點的求解,其中解答中熟記點關于直線的對稱點的解法是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.2、A【解析】

設等差數(shù)列的公差為,從而根據(jù),即可求出,這樣根據(jù)等差數(shù)列的前項和公式即可求出.【詳解】解:設等差數(shù)列的公差為,則由,得:,,,故選:A.【點睛】本題主要考查等差數(shù)列的通項公式和等差數(shù)列的前項和公式,屬于基礎題.3、C【解析】

由題可得數(shù)列是以為首相,為公差的等差數(shù)列,求出數(shù)列的通項公式,進而求出【詳解】因為,所以數(shù)列是以為首項,為公差的等差數(shù)列,所以,則【點睛】本題考查由遞推公式證明數(shù)列是等差數(shù)列以及等差數(shù)列的通項公式,屬于一般題.4、C【解析】

根據(jù)兩條存在斜率的直線平行,斜率相等且在縱軸上的截距不相等這一性質,可以求出的值.【詳解】直線的斜率為,在縱軸的截距為,因此若直線與直線互相平行,則一定有直線的斜率為,在縱軸的截距不等于,于是有且,解得,故本題選C.【點睛】本題考查了已知兩直線平行求參數(shù)問題.其時本題也可以運用下列性質解題:若直線與直線平行,則有且.5、C【解析】

將正方體的展開圖還原為正方體后,即可得到所求正確結論.【詳解】將正方體的展開圖還原為正方體ABCD﹣EFMN后,可得AF,CN異面;BM,AN平行;連接AN,NF,可得∠FAN為AF,BM所成角,且為60°;BN⊥DE,DE⊥AB可得DE⊥平面ABN,可得DE⊥BN,可得③④正確,故選C.【點睛】本題考查展開圖與空間幾何體的關系,考查空間線線的位置關系的判斷,屬于基礎題.6、C【解析】

根據(jù)題意先設,再根據(jù)空間兩點間的距離公式,得到,再由點M到點與點的距離相等建立方程求解.【詳解】設根據(jù)空間兩點間的距離公式得因為點M到點與點的距離相等所以解得所以故選:C【點睛】本題主要考查了空間兩點間的距離公式,還考查了運算求解的能力,屬于基礎題.7、D【解析】

首先利用同角三角函數(shù)的關系式求出sinC的值,進一步利用余弦定理和三角形的面積公式及基本不等式的應用求出結果.【詳解】△ABC中角ABC的對邊分別為a、b、c,cosC,利用同角三角函數(shù)的關系式sin1C+cos1C=1,解得sinC,由于acosB+bcosA=1,利用余弦定理,解得c=1.所以c1=a1+b1﹣1abcosC,整理得4,由于a1+b1≥1ab,故,所以.則,△ABC面積的最大值為,故選D.【點睛】本題考查的知識要點:三角函數(shù)關系式的恒等變換,正弦定理余弦定理和三角形面積的應用,基本不等式的應用,主要考查學生的運算能力和轉換能力,屬于中檔題.8、C【解析】

根據(jù)程序框圖列出算法循環(huán)的每一步,結合判斷條件得出輸出的的值.【詳解】執(zhí)行如圖所示的程序框圖如下:不成立,,;不成立,,;不成立,,;不成立,,.成立,跳出循環(huán)體,輸出的值為,故選C.【點睛】本題考查利用程序框圖計算輸出結果,對于這類問題,通常利用框圖列出算法的每一步,考查計算能力,屬于中等題.9、C【解析】

利用二倍角的余弦公式以及輔助角公式將函數(shù)化為的形式,然后再利用三角函數(shù)的圖像變換即可求解.【詳解】函數(shù),函數(shù)圖象上所有的點向右平行移動個單位長度可得,在將橫坐標伸長到原來的2倍,可得.故選:C【點睛】本題考查了二倍角的余弦公式、輔助角公式以及三角函數(shù)的圖像平移伸縮變換,需熟記公式,屬于基礎題.10、D【解析】

在正方形中連接,交于點,根據(jù)正方形的性質,在折疊圖中平面,得到,從而平面,面平面,則是在平面上的射影,找到直線與平面所所成的角.然后在直角三角中求解.【詳解】如圖所示:在正方形中連接,交于點,在折疊圖,連接,因為,所以平面,所以,又因為,所以平面,又因為平面,所以平面,則是在平面上的射影,所以即為所求.因為故選:D【點睛】本題主要考查了折疊圖問題,還考查了推理論證和空間想象的能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

先計算,再計算【詳解】在處測得樹頂?shù)难鼋菫?,在處測得樹頂?shù)难鼋菫閯t在中,故答案為【點睛】本題考查了三角函數(shù)的應用,也可以用正余弦定理解答.12、【解析】

根據(jù)題意,可令,結合,再進行整體代換即可求解【詳解】令,則,,,則,,,則函數(shù)值域為故答案為:【點睛】本題考查3倍角公式的使用,函數(shù)的轉化思想,屬于中檔題13、【解析】

由參變量分離法可得知,由二倍角的余弦公式以及二次函數(shù)的基本性質求出函數(shù)的最小值,即可得出實數(shù)的取值范圍.【詳解】不等式有解,等價于存在實數(shù),使得關于的不等式成立,故只需.令,,由二次函數(shù)的基本性質可知,當時,該函數(shù)取得最小值,即,.因此,實數(shù)的取值范圍是.故答案為:.【點睛】本題考查不等式有解的問題,涉及二倍角余弦公式以及二次函數(shù)基本性質的應用,一般轉化為函數(shù)的最值來求解,考查計算能力,屬于中等題.14、【解析】分析:先根據(jù)和項與通項關系得當時,,再檢驗,時,不滿足上述式子,所以結果用分段函數(shù)表示.詳解:∵已知數(shù)列的前項和,∴當時,,當時,,經(jīng)檢驗,時,不滿足上述式子,故數(shù)列的通項公式.點睛:給出與的遞推關系求,常用思路是:一是利用轉化為的遞推關系,再求其通項公式;二是轉化為的遞推關系,先求出與之間的關系,再求.應用關系式時,一定要注意分兩種情況,在求出結果后,看看這兩種情況能否整合在一起.15、【解析】

根據(jù)同角三角函數(shù)之間的關系,結合角所在的象限,即可求解.【詳解】因為,所以,故,解得,又,,所以.故填.【點睛】本題主要考查了同角三角函數(shù)之間的關系,三角函數(shù)在各象限的符號,屬于中檔題.16、【解析】

將函數(shù)進行化簡為,求出其單調增區(qū)間再結合,可得結論.【詳解】解:,遞增區(qū)間為:,可得,在范圍內單調遞增區(qū)間為。故答案為:.【點睛】本題考查了正弦函數(shù)的單調區(qū)間,屬于基礎題。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】試題分析:(1)利用和角公式及降次公式對f(x)進行化簡,得到f(x)=,代入周期公式即可;(2)由x的范圍求出ωx+φ的范圍,結合正弦函數(shù)單調性得出最值和相應的x.試題解析:(1),,,,,所以的最小正周期為.(2)∵,∴,當,即時,;當,即時,.點睛:三角函數(shù)式的化簡要遵循“三看”原則:一看角,這是重要一環(huán),通過看角之間的差別與聯(lián)系,把角進行合理的拆分,從而正確使用公式;二看函數(shù)名稱,看函數(shù)名稱之間的差異,從而確定使用的公式,常見的有切化弦;三看結構特征,分析結構特征,可以幫助我們找到變形的方向,如遇到分式要通分等.18、(1),](2)值域為[,].【解析】

(1)利用三角恒等變換化簡的解析式,根據(jù)條件,可求出周期和,結合奇函數(shù)性質,求出,再用整體代入法求出內的遞減區(qū)間;(2)利用函數(shù)的圖象變換規(guī)律,求出的解析式,再利用正弦函數(shù)定義域,即可求出時的值域.【詳解】解:(1)由題意得,因為相鄰兩對稱軸之間距離為,所以,又因為函數(shù)為奇函數(shù),所以,∴,因為,所以故函數(shù)令.得.令得,因為,所以函數(shù)的單調遞減區(qū)間為,](2)由題意可得,因為,所以所以,.即函數(shù)的值域為[,].【點睛】本題主要考查正弦函數(shù)在給定區(qū)間內的單調性和值域,包括周期性,奇偶性,單調性和最值,還涉及三角函數(shù)圖像的平移伸縮和三角恒等變換中的輔助角公式.19、(1);(2)【解析】

(1)由知:,利用等比數(shù)列的通項公式即可得出;(2)bn=|11﹣2n|,設數(shù)列{11﹣2n}的前n項和為Tn,則.當n≤5時,Sn=Tn;當n≥6時,Sn=2S5﹣Tn.【詳解】(1)證明:由知,所以數(shù)列是以為首項,為公比的等比數(shù)列.則,.(2),設數(shù)列前項和為,則,當時,;當時,;所以.【點睛】本題考查了等比數(shù)列與等差數(shù)列的通項公式及其前n項和公式、分類討論方法,考查了推理能力與計算能力,屬于中檔題.20、(1)證明見解析(2)證明見解析【解析】

(1)取的中點,連接,通過證明四邊形為平行四邊形,證得,由此證得平面.(2)通過證明,證得平面,由此證得平面,從而證得平面平面.【詳解】(1)證明:取PC的中點H,連接FH則FH∥BC,F(xiàn)H,又ED∥BC,ED,∴ED∥FH,ED=FH,∴四邊形EFHD為平行四邊形,∴EF∥DH,又DH?平面PCD,EF?平面PCD,∴EF∥平面PCD;(2)證明:∵PE⊥平面ABCD,CD⊥AD,∴CD⊥AP(三垂線定理),又AP⊥PD,∴AP⊥平面PCD,又∵GF∥AP,∴GF⊥平面PCD,∴平面EFG⊥平面PCD.【點睛】本小題主要考查線面平行的證明,考查面面垂直的證明,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(Ⅰ)見證明;(Ⅱ)【解析】

(Ⅰ)折疊前,AC⊥DE;,從而折疊后,DE⊥PF,DE⊥CF,由此能證明DE⊥平面PCF.再由DC∥AE,DC=AE能得到DC∥EB,DC=EB.說明四邊形DEBC為平行四邊形.可得CB∥DE.由此能證明平面PBC⊥平面PCF.(Ⅱ)由題意根據(jù)勾股定理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論