基于DCE-MRI影像反卷積模型的腫瘤異質(zhì)性分析及其在乳腺癌分子分型預(yù)測(cè)中的應(yīng)用_第1頁(yè)
基于DCE-MRI影像反卷積模型的腫瘤異質(zhì)性分析及其在乳腺癌分子分型預(yù)測(cè)中的應(yīng)用_第2頁(yè)
基于DCE-MRI影像反卷積模型的腫瘤異質(zhì)性分析及其在乳腺癌分子分型預(yù)測(cè)中的應(yīng)用_第3頁(yè)
基于DCE-MRI影像反卷積模型的腫瘤異質(zhì)性分析及其在乳腺癌分子分型預(yù)測(cè)中的應(yīng)用_第4頁(yè)
基于DCE-MRI影像反卷積模型的腫瘤異質(zhì)性分析及其在乳腺癌分子分型預(yù)測(cè)中的應(yīng)用_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

基于DCE-MRI影像反卷積模型的腫瘤異質(zhì)性分析及其在乳腺癌分子分型預(yù)測(cè)中的應(yīng)用摘要:

目前,乳腺癌的分子分型成為了研究的熱點(diǎn),基于組織學(xué)特征進(jìn)行分型對(duì)于治療方案的選擇和預(yù)后判斷具有重要意義。本文提出了一種基于DCE-MRI影像反卷積模型的腫瘤異質(zhì)性分析方法,并將其應(yīng)用于乳腺癌分子分型預(yù)測(cè)。該方法能夠從DCE-MRI影像中提取出微小的組織學(xué)特征,并將其反卷積還原至原始組織,同時(shí),結(jié)合機(jī)器學(xué)習(xí)算法,對(duì)不同腫瘤分子分型的特征進(jìn)行分析。實(shí)驗(yàn)結(jié)果表明,該方法在使用小數(shù)據(jù)集進(jìn)行訓(xùn)練和測(cè)試時(shí),能夠準(zhǔn)確地預(yù)測(cè)不同分子分型。

關(guān)鍵詞:DCE-MRI影像;反卷積;腫瘤異質(zhì)性分析;乳腺癌分子分型預(yù)測(cè)

Abstract:

Atpresent,themoleculartypingofbreastcancerhasbecomearesearchhotspot.Itisofgreatsignificancetoselecttreatmentplansandjudgeprognosisbasedonhistologicalcharacteristics.Inthispaper,atumorheterogeneityanalysismethodbasedonDCE-MRIimagedeconvolutionmodelisproposed,anditisappliedtopredictthemoleculartypingofbreastcancer.ThemethodcanextractsmallhistologicalfeaturesfromDCE-MRIimages,andrestorethemtotheoriginaltissuesbydeconvolution.Meanwhile,combinedwithmachinelearningalgorithm,thecharacteristicsofdifferenttumormoleculartypeswereanalyzed.Experimentalresultsshowthatthemethodcanaccuratelypredictdifferentmoleculartypeswhentrainedandtestedwithsmalldatasets.

Keywords:DCE-MRIimages;deconvolution;tumorheterogeneityanalysis;predictionofmoleculartypingofbreastcanceBreastcancerisacomplexdiseasethatexhibitssignificantheterogeneityinitsmolecularmakeup.Accuratecharacterizationofdifferentmolecularsubtypesofbreastcanceriscrucialforguidingpersonalizedtreatmentstrategies.DCE-MRIisapowerfulimagingtechniquethathasbeenwidelyusedforbreastcancerdiagnosisandtreatmentplanning.However,theinformationobtainedfromDCE-MRIimagesisoftenlimitedbythesmallhistologicalfeaturesthatarenotvisibleontheimages.

Toovercomethislimitation,researchershavedevelopedamethodtoextractandrestoresmallhistologicalfeaturesfromDCE-MRIimagesthroughdeconvolution.Thedeconvolutionprocessseparatesthesignalfromthesmallhistologicalfeaturesandthenoisegeneratedbytheimagingsystem.Byrestoringthesmallfeatures,themethodimprovestheaccuracyoftissuecharacterizationbasedontheDCE-MRIimages.

Tofurtherenhancetheaccuracyoftissuecharacterization,theresearchersalsocombinedthedeconvolutionmethodwithamachinelearningalgorithm.Byanalyzingthecharacteristicsofdifferenttumormoleculartypes,thealgorithmcanaccuratelypredictthemolecularsubtypeofbreastcancerwhentrainedandtestedwithsmalldatasets.

TheexperimentalresultshaveshownthattheproposedmethodcanimprovetheaccuracyoftissuecharacterizationbasedonDCE-MRIimagesandaccuratelypredictdifferentmolecularsubtypesofbreastcancer.ThismethodhasthepotentialtoimprovethediagnosisandtreatmentofbreastcancerbyprovidingmoreaccurateinformationaboutthemolecularmakeupofthetumorBreastcancerisaheterogeneousdiseasewithdistinctmolecularsubtypesthathavedifferentprognoses,responsestotreatment,andclinicaloutcomes.Accuratediagnosisandsubtypingofbreastcancerarecriticalfortailoringtreatmentstrategiesandimprovingpatientoutcomes.Currently,breastcancersubtypingreliesoninvasivetissuebiopsiesandpathologicalanalysis,whichcanbecostly,time-consuming,andriskyforpatients.Thishighlightstheneedfornon-invasiveandaccuratemethodsforbreastcancerdiagnosisandsubtyping.

Dynamiccontrast-enhancedmagneticresonanceimaging(DCE-MRI)isawidelyusedimagingmodalityforbreastcancerdetectionanddiagnosis.Itmeasuresthecontrastagentuptakeandwashoutinbreasttissue,providinginformationontissuevascularityandpermeability.DCE-MRIhasbeenshowntobeeffectiveindetectingbreastcancer,monitoringtreatmentresponse,andpredictingpatientoutcomes.However,ithaslimitedaccuracyinsubtypingbreastcancerbasedonmolecularcharacteristics.

Therefore,thereisagrowinginterestindevelopingmachinelearningalgorithmsthatcanaccuratelypredictthemolecularsubtypesofbreastcancerusingDCE-MRIimages.Thesealgorithmscanleveragethevastamountofimagingdatageneratedinroutineclinicalpracticeandprovidenon-invasiveandaccuratediagnosisandsubtypingofbreastcancer.

Recently,severalstudieshavereportedpromisingresultsusingmachinelearningalgorithmstopredictbreastcancersubtypesbasedonDCE-MRIimages.Forexample,astudybyVignatietal.usedarandomforestalgorithmtopredictthemolecularsubtypesofbreastcancerinpatientsundergoingneoadjuvantchemotherapy.Theyachievedanaccuracyof80%inpredictingtriple-negativebreastcancerand65%inpredictingHER2-positivebreastcancerbasedonDCE-MRIfeatures.

Inanotherstudy,Liuetal.usedadeeplearningalgorithmtopredictthemolecularsubtypesofbreastcancerinalargecohortofpatients.Theyachievedanaccuracyof91.3%inpredictingHER2-positivebreastcancer,83.6%inpredictingluminalAbreastcancer,83.1%inpredictingluminalBbreastcancer,and85.9%inpredictingtriple-negativebreastcancerbasedonDCE-MRIimages.

ThesestudiesdemonstratethepotentialofmachinelearningalgorithmstoaccuratelypredictmolecularsubtypesofbreastcancerusingDCE-MRIimages.However,mostofthesestudieswereperformedonsmalldatasetsandrequirefurthervalidationonlargercohorts.Moreover,thegeneralizationabilityandrobustnessofthesealgorithmsneedtobeevaluatedindifferentclinicalsettingsandimagingdevicestoensuretheirclinicalutility.

Inconclusion,machinelearningalgorithmshaveemergedasapromisingtoolfornon-invasiveandaccuratediagnosisandsubtypingofbreastcancerbasedonDCE-MRIimages.Furtherstudiesareneededtovalidateandoptimizethesealgorithmsandtoassesstheirclinicalusabilityandimpactonpatientoutcomes.Nevertheless,thesealgorithmsholdgreatpromiseforimprovingthediagnosisandtreatmentofbreastcancerandbridgingthegapbetweenimagingandmolecularprofilinginthiscomplexdiseaseBreastcancerisacomplexandheterogeneousdiseasewithdiversemolecularsubtypes,eachwithdistinctclinicalandbiologicalcharacteristics.Accuratediagnosisandsubtypingofbreastcancerarecriticalforselectingthemosteffectivetreatmentstrategyandimprovingpatientoutcomes.Traditionaldiagnosticmethodssuchasmammography,ultrasound,andbiopsyhavelimitationsintermsofsensitivity,specificity,andinvasiveness.

Dynamiccontrast-enhancedmagneticresonanceimaging(DCE-MRI)hasemergedasapowerfulimagingmodalityforbreastcancerdetectionandcharacterization.DCE-MRIprovideshighcontrastandspatialresolutionimagesofbreasttissue,allowingforthevisualizationofbloodflowandtissueperfusion.Inaddition,DCE-MRIcanbeusedtogeneratetemporalintensitycurvesthatreflectthekineticsofcontrastuptakeinthebreasttissue.

RecentadvancesinmachinelearningalgorithmshaveenabledthedevelopmentofautomatedandinterpretablemodelsforbreastcancerdiagnosisandclassificationbasedonDCE-MRIimages.Thesealgorithmsuseacombinationofimageprocessingtechniquesandstatisticallearningmethodstoextractquantitativefeaturesthatcapturethecomplexityofbreastcancerlesions.Bylearningfromlargedatasetsofannotatedimages,thesealgorithmscanidentifypatternsandrelationshipsthatarenoteasilydiscerniblebyvisualinspection.

Oneofthekeyadvantagesofmachinelearningalgorithmsistheirabilitytoimprovetheaccuracyandconsistencyofbreastcancerdiagnosisandsubtyping.Forexample,arecentstudybyWangetal.(2020)developedadeeplearningalgorithmthatachieved90.3%accuracyindistinguishingmalignantandbenignlesionsonDCE-MRIimages,outperformingradiologistswithsimilarlevelsofexperience.AnotherstudybyWuetal.(2019)usedasupportvectormachinealgorithmtoclassifybreastcancersubtypesbasedonDCE-MRIfeatures,achievinganoverallaccuracyof87.2%.

Inadditiontoimprovingdiagnosticaccuracy,machinelearningalgorithmshavethepotentialtoprovidenewinsightsintotheunderlyingbiologyofbreastcancer.Forinstance,astudybyTanetal.(2020)developedamulti-classifiermodelthatidentifieddistinctradiomicfeaturesassociatedwithdifferentmolecularsubtypesofbreastcancer.ThesefeatureswereabletopredicttheexpressionlevelsofimportantmolecularmarkerssuchasestrogenreceptorandHER2,providinganon-invasivemethodformolecularprofilingofbreastcancer.

Despitethepromisingresultsofmachinelearningalgorithmsforbreastcancerdiagnosisandsubtyping,therearestillseveralchallengesthatneedtobeaddressed.Onechallengeisthelackofstandardizedimagingprotocolsandannotationcriteria,whichcanaffectthereproducibilityandgeneralizabilityofthealgorithms.Anotherchallengeistheneedforlargeanddiversedatasetstotrainandvalidatethealgorithms,aswellasthe

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論