版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
畸變電網(wǎng)下PWM整流器魯棒預(yù)測控制研究摘要:畸變電網(wǎng)在現(xiàn)代工業(yè)生產(chǎn)中廣泛存在,其復(fù)雜性和不穩(wěn)定性對電力系統(tǒng)的穩(wěn)定運行產(chǎn)生了深遠影響。針對畸變電網(wǎng)下PWM整流器的魯棒控制問題,本文提出了一種基于預(yù)測控制的解決方案。首先,通過建立畸變電網(wǎng)下PWM整流器的動態(tài)數(shù)學(xué)模型,利用基于神經(jīng)網(wǎng)絡(luò)的系統(tǒng)辨識技術(shù)進行參數(shù)辨識,建立了一個能夠準確反映畸變電網(wǎng)特性的系統(tǒng)模型。然后,采用基于RBF神經(jīng)網(wǎng)絡(luò)的預(yù)測控制算法進行預(yù)測和控制,利用控制器對PWM整流器進行魯棒性調(diào)節(jié),實現(xiàn)了對畸變電網(wǎng)下PWM整流器的魯棒控制。最后,通過仿真實驗驗證了該預(yù)測控制算法的可行性和有效性。
關(guān)鍵詞:畸變電網(wǎng);PWM整流器;魯棒控制;預(yù)測控制;RBF神經(jīng)網(wǎng)絡(luò)
Abstract:Distortedpowergridhasbeenwidelyexistinmodernindustrialproduction,anditscomplexityandinstabilityhaveprofoundimpactonthestableoperationofpowersystem.InordertosolvetherobustcontrolproblemofPWMrectifierunderdistortedpowergrid,thispaperproposesasolutionbasedonpredictivecontrol.Firstly,byestablishingthedynamicmathematicalmodelofPWMrectifierunderdistortedpowergrid,usingthesystemidentificationtechnologybasedonneuralnetworkforparameteridentification,weestablishedasystemmodelthatcanaccuratelyreflectthecharacteristicsofdistortedpowergrid.Then,thepredictivecontrolalgorithmbasedonRBFneuralnetworkisusedforpredictionandcontrol,andthecontrollerisusedtoadjusttherobustnessofPWMrectifier,realizingtherobustcontrolofPWMrectifierunderdistortedpowergrid.Finally,thefeasibilityandeffectivenessofthepredictivecontrolalgorithmareverifiedbysimulationexperiments.
Keywords:Distortedpowergrid;PWMrectifier;Robustcontrol;Predictivecontrol;RBFneuralnetworInrecentyears,theuseofpowerelectronics-basedsystemssuchasPWMrectifiershasincreasedrapidlyduetotheirhighefficiencyandexcellentperformance.However,theoperationofsuchsystemsinadistortedpowergridcancausesignificantchallenges.Thedistortioninthepowergridcanresultinseveralissuessuchasreducedpowerquality,decreasedsystemefficiency,andeveninstability.Therefore,therobustcontrolofPWMrectifiersunderdistortedpowergridconditionshasbecomeanimportantresearchtopic.
Toaddressthischallenge,apredictivecontrolalgorithmbasedonRBFneuralnetworkisproposedinthisstudy.ThealgorithmutilizestheRBFneuralnetworktopredicttheoutputvoltageandcurrentofthePWMrectifierunderdifferentoperatingconditions.ThepredictedvaluesarethenusedbythecontrollertoadjusttherobustnessofthePWMrectifier.ThecontrolobjectiveistomaintainthedesiredoutputvoltageandcurrentofthePWMrectifierunderdistortedpowergridconditions.
Theproposedalgorithmwastestedthroughsimulationexperiments.TheresultsshowedthatthealgorithmwasabletoeffectivelymaintainthedesiredoutputvoltageandcurrentofthePWMrectifierunderdistortedpowergridconditions.ThesimulationsalsoshowedthattheproposedalgorithmhadbetterperformancecomparedtotraditionalPIcontrollers.
Inconclusion,theproposedpredictivecontrolalgorithmbasedonRBFneuralnetworkisaneffectivewaytoachieverobustcontrolofPWMrectifiersunderdistortedpowergridconditions.ThealgorithmcanimprovetheperformanceandstabilityofPWMrectifiers,henceimprovingpowerqualityandefficiency.FurtherresearchcanbeconductedtooptimizethealgorithmforpracticalapplicationsInadditiontotheproposedalgorithmbasedonRBFneuralnetwork,thereareotheradvancedcontrolstrategiesthatcanbeusedforPWMrectifiers.Onesuchstrategyisthemodelpredictivecontrol(MPC)whichisgainingincreasedattentioninrecentyearsduetoitsabilitytohandlecomplexcontrolproblems.MPCisapredictivecontrolmethodthatusesamathematicalmodelofthesystemtopredictthesystem'sfuturebehaviorandoptimizeacostfunctionoverafinitehorizon.TheadvantageofMPCovertraditionalcontroltechniquesisthatitcanhandleconstraintsanduncertainties,makingitasuitablechoiceforpowerelectronicssystems.
AnothercontrolstrategythatcanbeusedforPWMrectifiersisadaptivecontrol.Adaptivecontrolisatypeofcontrolthatadjuststhecontrollerparametersbasedonthechangesinthesystem'sdynamics.Thismeansthatthecontrollercanadapttovaryingoperatingconditions,makingitmoreflexibleandrobust.However,adaptivecontrolrequiresathoroughunderstandingofthesystem,andthedesignofthecontrollercanbemorechallengingcomparedtotraditionalcontrolmethods.
Moreover,theapplicationofartificialintelligence()techniquessuchasfuzzylogic,geneticalgorithms,andreinforcementlearning,hasshownpromisingresultsinthecontrolofpowerelectronicssystems.Forinstance,thefuzzylogiccontroller(FLC)isanon-linearcontroltechniquethatcanhandleuncertaintiesandnon-linearitiesinthesystem.FLCcanbeusedtodevelopacost-effectivecontrolstrategyforPWMrectifiersthatcanachievegoodperformanceunderdistortedpowergridconditions.
Inconclusion,thecontrolofPWMrectifiersisachallengingtaskduetothenon-linearandcomplexnatureofthesystem,andthepresenceofdistortedpowergridconditions.However,advancedcontrolstrategiessuchasMPC,adaptivecontrol,and-basedtechniquesofferapromisingapproachforachievingrobustandefficientcontrolofPWMrectifiers.FutureresearchcanfocusonthedevelopmentandimplementationoftheseadvancedcontrolstrategiesforpracticalapplicationsOneareaofresearchforfuturedevelopmentinPWMrectifiersistheintegrationwithrenewableenergysources,suchaswindandsolarpower.Thefluctuatingnatureofrenewableenergysourcescreateschallengesforstableandefficientoperationofthepowergrid.PWMrectifierscanplayaroleinbalancingthepowersupplyanddemand,andadvancedcontrolstrategiescanbedevelopedtooptimizetheperformanceofthepowergrid.
AnotherareaofresearchistheapplicationofPWMrectifiersinelectricvehicles.Withtheincreasingpopularityofelectricvehicles,thedemandforefficientandreliablepowerconvertersisgrowing.PWMrectifierscanbeusedasbatterychargersandmotordrivesinelectricvehicles.Advancedcontrolstrategiescanbeemployedtoensuresafeandfastcharging,andhigh-performancemotorcontrol.
Moreover,thedevelopmentofhardware-in-the-loop(HIL)simulationplatformscanfacilitatethetestingandvalidationofadvancedcontrolstrategiesforPWMrectifiers.HILsimulationallowsthecontrolalgorithmstobetestedinarealisticenvironment,withouttheneedforexpensiveandtime-consuminghardwaretesting.HILsimulationcanacceleratethedevelopmentanddeploymentofadvancedcontrolstrategiesforPWMrectifiers,andhelptoimprovetheefficiencyandreliabilityofpowerelectronicssystems.
Finally,theintegrationofartificialintelligence()techniques,suchasdeeplearningandreinforcementlearning,canfurtherenhancetheperformanceofPWMrectifiers.techniquescanlearnfromthesystembehaviorandadaptthecontrolstrategiesinreal-time,leadingtoimprovedefficiency,robustness,andreliability.However,thedevelopmentof-basedcontrolalgorithmsrequireslargeamountsoftrainingdataandcomputationalpower,andcarefulconsiderationofsafetyandethicalconcerns.
Insummary,thecontrolofPWMrectifiersisachallengingtask,butadvancedcontrolstrategiesandresearchareassuchasrenewableenergyintegration,electricvehicles,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年消防給水系統(tǒng)節(jié)能改造與運行維護合同3篇
- 2025年度建筑節(jié)能改造設(shè)計與實施合同gf02094篇
- 2025年生物科技專業(yè)共建校企合作框架協(xié)議3篇
- 2025年高科技農(nóng)業(yè)項目委托種植與采購協(xié)議3篇
- 2025年食堂檔口租賃及節(jié)假日特別服務(wù)合同3篇
- 2025年度陸路貨物運輸合同標準化管理范本4篇
- 2025版五金產(chǎn)品售后服務(wù)與購銷合同3篇
- 個人房產(chǎn)租賃合同(2024新版)一
- 二零二五年文化藝術(shù)品交易賠償合同范本3篇
- 2025年度時尚購物中心黃金地段攤位經(jīng)營權(quán)轉(zhuǎn)讓合同范本3篇
- 2024版塑料購銷合同范本買賣
- JJF 2184-2025電子計價秤型式評價大綱(試行)
- GB/T 44890-2024行政許可工作規(guī)范
- 2025屆山東省德州市物理高三第一學(xué)期期末調(diào)研模擬試題含解析
- 2024年滬教版一年級上學(xué)期語文期末復(fù)習(xí)習(xí)題
- 兩人退股協(xié)議書范文合伙人簽字
- 2024版【人教精通版】小學(xué)英語六年級下冊全冊教案
- 汽車噴漆勞務(wù)外包合同范本
- 2024年重慶南開(融僑)中學(xué)中考三模英語試題含答案
- 建筑制圖與陰影透視-第3版-課件12
- 2023年最新的校長給教師春節(jié)祝福語
評論
0/150
提交評論