![基于改進(jìn)深度學(xué)習(xí)的醫(yī)學(xué)影像肺癌識別算法研究_第1頁](http://file4.renrendoc.com/view/bbed4844dcf24f9ed6a7ac96aba64bb2/bbed4844dcf24f9ed6a7ac96aba64bb21.gif)
![基于改進(jìn)深度學(xué)習(xí)的醫(yī)學(xué)影像肺癌識別算法研究_第2頁](http://file4.renrendoc.com/view/bbed4844dcf24f9ed6a7ac96aba64bb2/bbed4844dcf24f9ed6a7ac96aba64bb22.gif)
![基于改進(jìn)深度學(xué)習(xí)的醫(yī)學(xué)影像肺癌識別算法研究_第3頁](http://file4.renrendoc.com/view/bbed4844dcf24f9ed6a7ac96aba64bb2/bbed4844dcf24f9ed6a7ac96aba64bb23.gif)
![基于改進(jìn)深度學(xué)習(xí)的醫(yī)學(xué)影像肺癌識別算法研究_第4頁](http://file4.renrendoc.com/view/bbed4844dcf24f9ed6a7ac96aba64bb2/bbed4844dcf24f9ed6a7ac96aba64bb24.gif)
![基于改進(jìn)深度學(xué)習(xí)的醫(yī)學(xué)影像肺癌識別算法研究_第5頁](http://file4.renrendoc.com/view/bbed4844dcf24f9ed6a7ac96aba64bb2/bbed4844dcf24f9ed6a7ac96aba64bb25.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
基于改進(jìn)深度學(xué)習(xí)的醫(yī)學(xué)影像肺癌識別算法研究摘要
肺癌是一種常見的惡性腫瘤,早期發(fā)現(xiàn)和診斷對治療和預(yù)后的影響非常重要。醫(yī)學(xué)影像學(xué)成為肺癌診斷的重要手段之一。本文利用醫(yī)學(xué)影像肺癌診斷中常用的CT影像數(shù)據(jù),基于改進(jìn)深度學(xué)習(xí)的算法進(jìn)行研究。首先,分析常用的卷積神經(jīng)網(wǎng)絡(luò)(CNN)的局限性,提出了改進(jìn)后的卷積神經(jīng)網(wǎng)絡(luò)(improvedCNN)算法。然后,在處理醫(yī)學(xué)影像數(shù)據(jù)時,針對噪聲和數(shù)據(jù)維度較高的問題,提出了一種基于主成分分析(PCA)和小波變換(Wavelet)的數(shù)據(jù)預(yù)處理方法,以提升實驗結(jié)果的準(zhǔn)確度和魯棒性。實驗結(jié)果表明,與傳統(tǒng)的卷積神經(jīng)網(wǎng)絡(luò)(CNN)算法相比,improvedCNN算法在肺癌識別中的準(zhǔn)確性和穩(wěn)定性均有所提升。同時,所提出的數(shù)據(jù)預(yù)處理方法也能夠有效地降低噪聲和提升預(yù)測能力。
關(guān)鍵詞:醫(yī)學(xué)影像、肺癌識別、卷積神經(jīng)網(wǎng)絡(luò)、PCA、Wavelet
Abstract
Lungcancerisacommonmalignanttumor,anditsearlydetectionanddiagnosishaveasignificantimpactonthetreatmentandprognosis.Medicalimaginghasbecomeanimportantmeansforlungcancerdiagnosis.Inthispaper,weproposealungcancerrecognitionalgorithmbasedonimproveddeeplearningusingCTimagescommonlyusedinmedicalimaging.Firstly,weanalyzethelimitationsoftheconventionalconvolutionalneuralnetwork(CNN),andproposeanimprovedCNNalgorithmtoovercometheselimitations.Secondly,toaddresstheissueofhighnoiseanddimensionalityofmedicalimagedata,weproposeadatapreprocessingmethodbasedonprincipalcomponentanalysis(PCA)andwavelettransformtoimprovetheaccuracyandrobustnessoftheexperimentalresults.TheexperimentalresultsshowthattheimprovedCNNalgorithmachievesbetteraccuracyandstabilityinlungcancerrecognitioncomparedtothetraditionalCNNalgorithm.Moreover,theproposeddatapreprocessingmethodcaneffectivelyreducenoiseandenhancepredictionability.
Keywords:medicalimaging;lungcancerrecognition;convolutionalneuralnetwork;PCA;WaveletMedicalimagingplaysavitalroleintheearlydetectionanddiagnosisoflungcancer.However,theaccuracyandrobustnessoflungcancerrecognitionalgorithmsdependonthequalityandcomplexityofthemedicalimages.Therefore,thereisaneedforadvanceddatapreprocessingtechniquestoimprovetheperformanceoflungcancerrecognitionalgorithms.
Inthisstudy,weproposeanoveldatapreprocessingmethodthatcombinesprincipalcomponentanalysis(PCA)andwavelettransformtoenhancetheaccuracyandstabilityoflungcancerrecognitionalgorithms.PCAisusedtoreducethedimensionalityoftheinputimagesandremoveredundantinformation,whilewavelettransformisusedtodecomposetheinputimagesintomultiplefrequencybandsandextractrelevantfeatures.
Toevaluatetheeffectivenessofourproposedmethod,weemployaconvolutionalneuralnetwork(CNN)algorithmforlungcancerrecognition.WeusebothtraditionalCNNandimprovedCNNalgorithmstocomparetheaccuracyandstabilityoftherecognitionresults.TheexperimentalresultsshowthattheimprovedCNNalgorithmachievesbetteraccuracyandstabilitythanthetraditionalCNNalgorithm.Moreover,ourproposeddatapreprocessingmethodcaneffectivelyreducenoiseandenhancethepredictionabilityofthelungcancerrecognitionalgorithm.
Inconclusion,ourproposeddatapreprocessingmethodthatcombinesPCAandwavelettransformisaneffectiveapproachtoenhancetheaccuracyandrobustnessoflungcancerrecognitionalgorithms.ThismethodcanbefurtherappliedtoothermedicalimagingproblemstoimprovetheperformanceofexistingalgorithmsFurthermore,thesuccessofourmethodhighlightstheimportanceofdatapreprocessinginmedicalimageanalysis.Preprocessingtechniquescansignificantlyaffecttheaccuracyandrobustnessofmedicalimagerecognitionalgorithms,asmedicalimagesareoftensubjecttovariationsinresolution,noise,andcontrast.Assuch,combiningmultiplepreprocessingtechniques,suchaswavelettransformandPCA,canhelptoaddresstheseissuesandproducemoreaccuratepredictions.
Movingforward,thereisroomforfurtherinvestigationandrefinementofourproposedmethod.Forinstance,exploringotherdimensionalityreductionalgorithms,suchast-SNEorLLE,mayyieldevenbetterresults.Additionally,applyingdifferentwaveletfunctionsorscalingfactorscouldimprovetheeffectivenessofwavelettransforminreducingnoiseandenhancingfeaturesinmedicalimages.
Overall,ourstudydemonstratesthepotentialofcombiningPCAandwavelettransformformedicalimagerecognition.Byutilizingthesetechniques,ourproposeddatapreprocessingmethodcanenhancetheaccuracyandrobustnessoflungcancerrecognitionalgorithms,pavingthewayforimproveddiagnosesandtreatmentplansInadditiontothemethodsdiscussedabove,thereareseveralothertechniquesthatcanbeusedtoimprovemedicalimagerecognition.Oneapproachistousedeeplearningalgorithms,whichhaveshownpromisingresultsinavarietyofmedicalimagingapplications.Deeplearningalgorithmsuseartificialneuralnetworkstoautomaticallylearnfeaturesfromthedata,andhavebeenshowntobeeffectiveintaskssuchastumordetectionandsegmentation.
Anotherapproachistoincorporateaprioriknowledgeintotherecognitionprocess.Forexample,inlungcancerrecognition,priorknowledgeabouttheshapeandtextureoflungnodulescanbeusedtoimprovetheaccuracyoftherecognitionalgorithm.Thiscanbeachievedthroughtheuseofshapeandtextureanalysistechniques,suchasfractalanalysisorgray-levelco-occurrencematrixanalysis.
Finally,itisimportanttoconsiderthepracticallimitationsofmedicalimagerecognitionalgorithms.Onemajorlimitationistheavailabilityoflarge,high-qualitydatasetsfortrainingandtesting.Withoutaccesstolargedatasets,itcanbedifficulttodevelopaccurateandrobustrecognitionalgorithms.Additionally,thecomputationalresourcesrequiredtotrainandtestthesealgorithmscanbesubstantial,whichmaylimittheirpracticalapplicationinclinicalsettings.
Despitetheselimitations,advancesinmedicalimagerecognitionhavethepotentialtorevolutionizethefieldofdiagnosisandtreatment.Bycombiningadvancedimagingtechnologieswithsophisticatedanalys
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 促進(jìn)美麗城市建設(shè)的綜合發(fā)展策略
- 文化創(chuàng)新與傳統(tǒng)文化融合策略
- 2025屆河南省漯河市召陵區(qū)重點(diǎn)名校中考生物模擬試題含解析
- 2025屆遼寧省大連西崗區(qū)七校聯(lián)考中考聯(lián)考生物試題含解析
- 吉林省長春市第72中學(xué)2025屆中考聯(lián)考生物試卷含解析
- 2025屆浙江省金華市義烏市市級名校中考化學(xué)模擬預(yù)測題含解析
- 山東省棗莊市滕州市滕州育才中學(xué)2025屆初中生物畢業(yè)考試模擬沖刺卷含解析
- 醫(yī)院保潔服務(wù)項目合同
- 運(yùn)輸汽車租賃合同范本
- 石灰石購銷合同協(xié)議
- 金屬非金屬礦山重大生產(chǎn)安全事故隱患判定標(biāo)準(zhǔn)課件
- 四年級上冊數(shù)學(xué)課件-一般應(yīng)用題 全國通用(共26張PPT)
- 肝臟炎性假瘤的影像學(xué)表現(xiàn)培訓(xùn)課件
- 國家行政機(jī)關(guān)公文格式課件
- 業(yè)務(wù)員回款考核辦法
- 急性心梗的護(hù)理業(yè)務(wù)學(xué)習(xí)課件
- 2021年投標(biāo)部工作計劃
- 導(dǎo)向標(biāo)識系統(tǒng)設(shè)計(二)課件
- 好書推薦《西游記》共33張幻燈片
- 聚焦:如何推進(jìn)教育治理體系和治理能力現(xiàn)代化
- 化工儀表自動化【第四章】自動控制儀表
評論
0/150
提交評論