




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
基于深度學(xué)習(xí)的輪對激光光條圖像修復(fù)研究基于深度學(xué)習(xí)的輪對激光光條圖像修復(fù)研究
摘要:
輪對激光光條圖像的質(zhì)量直接影響到鐵路運(yùn)輸?shù)陌踩托?,因此對其進(jìn)行修復(fù)具有重要意義。本文提出了一種基于深度學(xué)習(xí)的輪對激光光條圖像修復(fù)方法。首先,我們收集了大量原始和瑕疵圖像,用于構(gòu)建訓(xùn)練和測試數(shù)據(jù)集。接著,利用卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行圖像修復(fù),該網(wǎng)絡(luò)由編碼器、解碼器和反卷積操作組成。在訓(xùn)練階段,我們采用自編碼器和殘差學(xué)習(xí)以增強(qiáng)網(wǎng)絡(luò)的修復(fù)效果。在測試階段,根據(jù)網(wǎng)絡(luò)的輸出進(jìn)行自適應(yīng)像素分類,通過分別對不同的像素分配優(yōu)先級來保證修復(fù)效果優(yōu)良。實(shí)驗(yàn)結(jié)果表明,本文提出的方法可以有效地修復(fù)輪對激光光條圖像,提高了圖像質(zhì)量及細(xì)節(jié)信息的恢復(fù)能力。
關(guān)鍵詞:輪對激光光條圖像,深度學(xué)習(xí),自編碼器,殘差學(xué)習(xí),自適應(yīng)像素分類
Abstract:
Thequalityofthewheel-raillaserstripeimagedirectlyaffectsthesafetyandefficiencyofrailwaytransportation.Therefore,itsrepairisofgreatsignificance.Inthispaper,weproposeadeeplearningbasedmethodforrepairingwheel-raillaserstripeimages.Firstly,wecollectedalargenumberoforiginalanddefectiveimagestoconstructtrainingandtestingdatasets.Then,aconvolutionalneuralnetworkisusedforimagerestoration,whichconsistsofanencoder,adecoder,anddeconvolutionoperations.Inthetrainingphase,weusetheautoencoderandresiduallearningtoenhancetherestorationeffectofthenetwork.Inthetestingphase,weadaptivelyclassifypixelsbasedonthenetworkoutput,andassigndifferentprioritiestodifferentpixelstoensuretherestorationeffectisgood.Experimentalresultsshowthattheproposedmethodcaneffectivelyrepairwheel-raillaserstripeimagesandimprovetheabilitytorestoreimagequalityanddetailinformation.
Keywords:wheel-raillaserstripeimage,deeplearning,autoencoder,residuallearning,adaptivepixelclassificationRailwaytransportationplaysasignificantroleinmoderntransportinfrastructure,andthesafetyandreliabilityofrailwaysystemsareessentialfactors.Onekeycomponentofrailwaysystemsisthewheel-railsystem,andthemonitoringofthewheel-railinterfaceisbecomingincreasinglyimportant.Laser-basedopticalmeasurementtechnologyhasbeenwidelyusedtomonitorthegeometryofrailtracks,includingthewheel-railcontactarea.Wheel-raillaserstripeimagingtechnologycanbeusedtoextractthecontactgeometryinformation,andithasbeenappliedinmanyrailwayinspectionscenarios.
However,thewheel-raillaserstripeimagescanbeseriouslydegradedbyvariousfactors,includingenvironmentalchanges,sensornoise,andotherartifacts.Thedegradedimagescanaffecttheaccuracyandreliabilityofrailmonitoringandcanresultinmisleadingresults,whichcouldimpactthesafetyoftherailwaysystem.Therefore,itiscrucialtodevelopeffectivemethodsforrestoringthedegradedwheel-raillaserstripeimages.
Inrecentyears,deeplearningmethodshaveachievedremarkablesuccessinvariousimagerestorationtasks,includingimagedenoising,super-resolution,andimageinpainting.Inthisstudy,weproposeanautoencoder-baseddeeplearningmethodforwheel-raillaserstripeimagerestoration.Inparticular,wedesignaresidualautoencodernetworkthatcaneffectivelycapturethecompleximagefeaturesandrestorethedegradedimagedetails.
Toovercomethelimitationsoftraditionaldeeplearningapproaches,weproposeanadaptivepixelclassificationschemetoprioritizetherestorationofdifferentimagepixels.Theproposedschemecanassignhigherprioritiestoimagepixelswithmoresignificantrestorationpotential,therebyensuringtherestorationqualityandretainingthecrucialinformationintheoriginalimage.
Experimentalresultsshowthattheproposedmethodcaneffectivelyrestorethedegradedwheel-raillaserstripeimagesandimprovetheimagequalityanddetailinformation.Ourapproachoutperformsotherstate-of-the-artimagerestorationmethodsintermsofrestorationaccuracyandcomputationalefficiency.Overall,ourproposedmethodcancontributetothesafeandreliableoperationofrailwaysystemsbyenhancingrailmonitoringaccuracyandreliabilityMoreover,theproposedmethodcanalsohavepotentialapplicationsinotherfields,suchasrobotics,manufacturing,andmedicalimaging,wherelaserstripeprojectioniscommonlyusedfor3Dsurfacemeasurementandinspection.Byrestoringthedegradedlaserstripeimages,ourapproachcanhelpimprovetheaccuracyandreliabilityofsurfacereconstructionanddefectdetection,whicharecriticalforqualitycontrolandproductevaluation.
Inadditiontotheproposedmethod,therearealsosomefutureresearchdirectionsthatcanbeexploredtofurtherimprovetheperformanceoflaserstripeimagerestoration.Forexample,incorporatingmorepriorknowledgeorconstraintsintotheimagerestorationprocess,suchasthegeometricstructureofthelaserstripeorthestatisticalcharacteristicsofthenoise,canhelpenhancetherestorationaccuracyandrobustness.Moreover,multi-viewormulti-frequencylaserstripeprojectioncanbeusedtoobtainmoreinformationaboutthesurfacetextureandshape,whichcanbeexploitedforbetterimagerestorationandfusion.
Overall,theproposedmethodpresentedinthispaperservesasapromisingsolutionforrestoringthedegradedwheel-raillaserstripeimages,whichcansignificantlybenefittherailwayindustrybyimprovingthesafety,efficiency,andreliabilityofrailmonitoringandmaintenance.TheproposedmethodcanalsohavebroaderapplicationsinotherfieldsthatinvolvelaserstripeprojectionandimagerestorationInadditiontotheapplicationsmentionedabove,theproposedmethodcanalsobeappliedtoothertypesoflaserstripeimages,suchasthoseproducedinmanufacturingandindustrialsettings.Forexample,laserstripesensorsarecommonlyusedin3Dscanningandmeasurement,wheretheycaptureobjectsurfaceinformationforinspectionandanalysis.However,thecapturedlaserstripeimagescanbeaffectedbyvariousfactorssuchasnoise,occlusion,andgeometricdistortion,whichcandegradethequalityoftheacquireddata.
Theproposedmethodcanbeadaptedtoaddressthesechallengesandenhancetheaccuracyandreliabilityof3Dmeasurementandinspection.Byeffectivelyremovingnoiseanddistortionfromthelaserstripeimages,theproposedmethodcanhelptoimprovetheprecisionandcompletenessofobjectsurfacereconstruction,whichiscriticalforqualitycontrolanddefectdetectioninmanufacturingandindustrialprocesses.
Moreover,theproposedmethodcanbeintegratedwithotherimageprocessingtechniques,suchasfeaturedetectionandtracking,toenablereal-timeanalysisandfeedbackindynamicenvironments.Forinstance,inroboticsandautomation,laserstripesensorscanbeusedtoguidethemotionandmanipulationofroboticarmsandtools.Theproposedmethodcanhelptoimprovetheaccuracyandrobustnessofthesensingandcontrolsystem,byprovidingreliableandaccuratefeedbackoftheobjectsurfacecharacteristics
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中考說明文相關(guān)知識點(diǎn)
- 如何加強(qiáng)供電所管理
- 技術(shù)類實(shí)習(xí)生合同范本
- 培訓(xùn)出差報(bào)告
- 會(huì)員權(quán)益轉(zhuǎn)讓合同
- 彩妝創(chuàng)業(yè)財(cái)務(wù)分析報(bào)告
- 房地產(chǎn)拍賣合同示范
- 教學(xué)設(shè)計(jì)人物課件
- 6S管理在醫(yī)院藥品管理中的應(yīng)用
- 技術(shù)部經(jīng)理履新述職報(bào)告
- 實(shí)驗(yàn)三鉀離子對氣孔開度影響
- 2022版義務(wù)教育(數(shù)學(xué))課程標(biāo)準(zhǔn)(含2022年修訂部分)
- 市政學(xué)-張旭霞-第四章-城市土地管理和住房管理
- 特殊教育-資源中心-職能---ppt課件
- T∕ACSC 01-2022 輔助生殖醫(yī)學(xué)中心建設(shè)標(biāo)準(zhǔn)(高清最新版)
- 通力救援程序
- 1混凝土拌合站臨建方案
- 桐鄉(xiāng)市烏鎮(zhèn)歷史文化保護(hù)區(qū)保護(hù)規(guī)劃
- 移交涉密載體簽收單(模板)
- 城鎮(zhèn)自來水廠運(yùn)行維護(hù)質(zhì)量及安全技術(shù)標(biāo)準(zhǔn)規(guī)程(共72頁)
- 臺灣民法典目錄
評論
0/150
提交評論