2023屆四川省宜賓市南溪區(qū)市級名校中考適應性考試數(shù)學試題含解析_第1頁
2023屆四川省宜賓市南溪區(qū)市級名校中考適應性考試數(shù)學試題含解析_第2頁
2023屆四川省宜賓市南溪區(qū)市級名校中考適應性考試數(shù)學試題含解析_第3頁
2023屆四川省宜賓市南溪區(qū)市級名校中考適應性考試數(shù)學試題含解析_第4頁
2023屆四川省宜賓市南溪區(qū)市級名校中考適應性考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.中國幅員遼闊,陸地面積約為960萬平方公里,“960萬”用科學記數(shù)法表示為()A.0.96×107 B.9.6×106 C.96×105 D.9.6×1022.安徽省2010年末森林面積為3804.2千公頃,用科學記數(shù)法表示3804.2千正確的是()A.3804.2×103 B.380.42×104 C.3.8042×106 D.3.8042×1053.一次函數(shù)與的圖象如圖所示,給出下列結論:①;②;③當時,.其中正確的有()A.0個 B.1個 C.2個 D.3個4.如圖所示,有一條線段是()的中線,該線段是().A.線段GH B.線段AD C.線段AE D.線段AF5.已知關于x的方程2x+a-9=0的解是x=2,則a的值為A.2 B.3 C.4 D.56.一、單選題在反比例函數(shù)的圖象中,陰影部分的面積不等于4的是()A. B. C. D.7.一次函數(shù)滿足,且y隨x的增大而減小,則此函數(shù)的圖像一定不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知x2-2x-3=0,則2x2-4x的值為()A.-6 B.6 C.-2或6 D.-2或309.已知數(shù)a、b、c在數(shù)軸上的位置如圖所示,化簡|a+b|﹣|c﹣b|的結果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c10.已知等邊三角形的內切圓半徑,外接圓半徑和高的比是()A.1:2: B.2:3:4 C.1::2 D.1:2:3二、填空題(本大題共6個小題,每小題3分,共18分)11.若分式方程的解為正數(shù),則a的取值范圍是______________.12.方程=1的解是___.13.同時拋擲兩枚質地均勻的硬幣,則兩枚硬幣全部正面向上的概率是.14.圓錐的底面半徑為6㎝,母線長為10㎝,則圓錐的側面積為______cm215.如圖,在網(wǎng)格中,小正方形的邊長均為1,點A、B、O都在格點上,則∠OAB的正弦值是_____.16.函數(shù)中自變量x的取值范圍是___________.三、解答題(共8題,共72分)17.(8分)班級的課外活動,學生們都很積極.梁老師在某班對同學們進行了一次關于“我喜愛的體育項目”的調査,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請根據(jù)圖中的信息,解答下列問題:調查了________名學生;補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中,“乒乓球”部分所對應的圓心角度數(shù)為________;學校將舉辦運動會,該班將推選5位同學參加乒乓球比賽,有3位男同學和2位女同學,現(xiàn)準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.18.(8分)((1)計算:;(2)先化簡,再求值:,其中a=.19.(8分)如圖,已知二次函數(shù)的圖象與軸交于,兩點在左側),與軸交于點,頂點為.(1)當時,求四邊形的面積;(2)在(1)的條件下,在第二象限拋物線對稱軸左側上存在一點,使,求點的坐標;(3)如圖2,將(1)中拋物線沿直線向斜上方向平移個單位時,點為線段上一動點,軸交新拋物線于點,延長至,且,若的外角平分線交點在新拋物線上,求點坐標.20.(8分)計算:.先化簡,再求值:,其中.21.(8分)如圖,AB為☉O的直徑,CD與☉O相切于點E,交AB的延長線于點D,連接BE,過點O作OC∥BE,交☉O于點F,交切線于點C,連接AC.(1)求證:AC是☉O的切線;(2)連接EF,當∠D=°時,四邊形FOBE是菱形.22.(10分)某新建火車站站前廣場需要綠化的面積為46000米2,施工隊在綠化了22000米2后,將每天的工作量增加為原來的1.5倍,結果提前4天完成了該項綠化工程.該項綠化工程原計劃每天完成多少米2?該項綠化工程中有一塊長為20米,寬為8米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?23.(12分)如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點D,連接AD.過點D作DE⊥AC,垂足為點E.求證:DE是⊙O的切線;當⊙O半徑為3,CE=2時,求BD長.24.已知:如圖,在矩形紙片ABCD中,,,翻折矩形紙片,使點A落在對角線DB上的點F處,折痕為DE,打開矩形紙片,并連接EF.的長為多少;求AE的長;在BE上是否存在點P,使得的值最小?若存在,請你畫出點P的位置,并求出這個最小值;若不存在,請說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題分析:“960萬”用科學記數(shù)法表示為9.6×106,故選B.考點:科學記數(shù)法—表示較大的數(shù).2、C【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.【詳解】∵3804.2千=3804200,∴3804200=3.8042×106;故選:C.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.3、B【解析】

仔細觀察圖象,①k的正負看函數(shù)圖象從左向右成何趨勢即可;②a,b看y2=x+a,y1=kx+b與y軸的交點坐標;③看兩函數(shù)圖象的交點橫坐標;④以兩條直線的交點為分界,哪個函數(shù)圖象在上面,則哪個函數(shù)值大.【詳解】①∵y1=kx+b的圖象從左向右呈下降趨勢,

∴k<0正確;

②∵y2=x+a,與y軸的交點在負半軸上,

∴a<0,故②錯誤;

③當x<3時,y1>y2錯誤;

故正確的判斷是①.

故選B.【點睛】本題考查一次函數(shù)性質的應用.正確理解一次函數(shù)的解析式:y=kx+b(k≠0)y隨x的變化趨勢:當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.4、B【解析】

根據(jù)三角形一邊的中點與此邊所對頂點的連線叫做三角形的中線逐一判斷即可得.【詳解】根據(jù)三角形中線的定義知:線段AD是△ABC的中線.故選B.【點睛】本題考查了三角形的中線,解題的關鍵是掌握三角形一邊的中點與此邊所對頂點的連線叫做三角形的中線.5、D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=1.故選D.6、B【解析】

根據(jù)反比例函數(shù)中k的幾何意義,過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|解答即可.【詳解】解:A、圖形面積為|k|=1;B、陰影是梯形,面積為6;C、D面積均為兩個三角形面積之和,為2×(|k|)=1.故選B.【點睛】主要考查了反比例函數(shù)中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€知識點;這里體現(xiàn)了數(shù)形結合的思想,做此類題一定要正確理解k的幾何意義.圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系即S=|k|.7、C【解析】

y隨x的增大而減小,可得一次函數(shù)y=kx+b單調遞減,k<0,又滿足kb<0,可得b>0,由此即可得出答案.【詳解】∵y隨x的增大而減小,∴一次函數(shù)y=kx+b單調遞減,∴k<0,∵kb<0,∴b>0,∴直線經(jīng)過第二、一、四象限,不經(jīng)過第三象限,故選C.【點睛】本題考查了一次函數(shù)的圖象和性質,熟練掌握一次函數(shù)y=kx+b(k≠0,k、b是常數(shù))的圖象和性質是解題的關鍵.8、B【解析】方程兩邊同時乘以2,再化出2x2-4x求值.解:x2-2x-3=0

2×(x2-2x-3)=0

2×(x2-2x)-6=0

2x2-4x=6

故選B.9、C【解析】

首先根據(jù)數(shù)軸可以得到a、b、c的取值范圍,然后利用絕對值的定義去掉絕對值符號后化簡即可.【詳解】解:通過數(shù)軸得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案為a+c.故選A.10、D【解析】試題分析:圖中內切圓半徑是OD,外接圓的半徑是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,則OD:OC=1:2,因而OD:OC:AD=1:2:1,所以內切圓半徑,外接圓半徑和高的比是1:2:1.故選D.考點:正多邊形和圓.二、填空題(本大題共6個小題,每小題3分,共18分)11、a<8,且a≠1【解析】分式方程去分母得:x=2x-8+a,解得:x=8-a,根據(jù)題意得:8-a>2,8-a≠1,解得:a<8,且a≠1.故答案為:a<8,且a≠1.【點睛】分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,根據(jù)分式方程解為正數(shù)求出a的范圍即可.此題考查了分式方程的解,需注意在任何時候都要考慮分母不為2.12、x=﹣4【解析】

分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.【詳解】去分母得:3+2x=x﹣1,解得:x=﹣4,經(jīng)檢驗x=﹣4是分式方程的解.【點睛】此題考查了解分式方程,利用了轉化的思想,解分式方程注意要檢驗.13、.【解析】試題分析:畫樹狀圖為:共有4種等可能的結果數(shù),其中兩枚硬幣全部正面向上的結果數(shù)為1,所以兩枚硬幣全部正面向上的概率=.故答案為.考點:列表法與樹狀圖法.14、60π【解析】

圓錐的側面積=π×底面半徑×母線長,把相應數(shù)值代入即可求解.解:圓錐的側面積=π×6×10=60πcm1.15、【解析】

如圖,過點O作OC⊥AB的延長線于點C,則AC=4,OC=2,在Rt△ACO中,AO=,∴sin∠OAB=.故答案為.16、x≤2【解析】試題解析:根據(jù)題意得:解得:.三、解答題(共8題,共72分)17、50見解析(3)115.2°(4)【解析】試題分析:(1)用最喜歡籃球的人數(shù)除以它所占的百分比可得總共的學生數(shù);(2)用學生的總人數(shù)乘以各部分所占的百分比,可得最喜歡足球的人數(shù)和其他的人數(shù),即可把條形統(tǒng)計圖補充完整;(3)根據(jù)圓心角的度數(shù)=360o×它所占的百分比計算;(4)列出樹狀圖可知,共有20種等可能的結果,兩名同學恰為一男一女的有12種情況,從而可求出答案.解:(1)由題意可知該班的總人數(shù)=15÷30%=50(名)故答案為50;(2)足球項目所占的人數(shù)=50×18%=9(名),所以其它項目所占人數(shù)=50﹣15﹣9﹣16=10(名)補全條形統(tǒng)計圖如圖所示:(3)“乒乓球”部分所對應的圓心角度數(shù)=360°×=115.2°,故答案為115.2°;(4)畫樹狀圖如圖.由圖可知,共有20種等可能的結果,兩名同學恰為一男一女的有12種情況,所以P(恰好選出一男一女)==.點睛:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,概率的計算.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息及掌握概率的計算方法是解決問題的關鍵.18、(1)2016;(2)a(a﹣2),.【解析】試題分析:(1)分別根據(jù)0指數(shù)冪及負整數(shù)指數(shù)冪的計算法則、特殊角的三角函數(shù)值、絕對值的性質及數(shù)的開方法則計算出各數(shù),再根據(jù)實數(shù)混合運算的法則進行計算即可;(2)先算括號里面的,再算除法,最后把a的值代入進行計算即可.試題解析:(1)原式==2016;(2)原式====a(a﹣2),當a=時,原式==.19、(1)4;(2),;(3).【解析】

(1)過點D作DE⊥x軸于點E,求出二次函數(shù)的頂點D的坐標,然后求出A、B、C的坐標,然后根據(jù)即可得出結論;(2)設點是第二象限拋物線對稱軸左側上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,證出,列表比例式,并找出關于t的方程即可得出結論;(3)判斷點D在直線上,根據(jù)勾股定理求出DH,即可求出平移后的二次函數(shù)解析式,設點,,過點作于,于,軸于,根據(jù)勾股定理求出AG,聯(lián)立方程即可求出m、n,從而求出結論.【詳解】解:(1)過點D作DE⊥x軸于點E當時,得到,頂點,∴DE=1由,得,;令,得;,,,,OC=3.(2)如圖1,設點是第二象限拋物線對稱軸左側上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,由翻折得:,;,,軸,,,,由勾股定理得:,,,,,,,解得:(不符合題意,舍去),;,.(3)原拋物線的頂點在直線上,直線交軸于點,如圖2,過點作軸于,;由題意,平移后的新拋物線頂點為,解析式為,設點,,則,,,過點作于,于,軸于,,,、分別平分,,,點在拋物線上,,根據(jù)題意得:解得:【點睛】此題考查的是二次函數(shù)的綜合大題,難度較大,掌握二次函數(shù)平移規(guī)律、二次函數(shù)的圖象及性質、相似三角形的判定及性質和勾股定理是解決此題的關鍵.20、(1)1;(2)2-1.【解析】

(1)分別計算負指數(shù)冪、絕對值、零指數(shù)冪、特殊角的三角函數(shù)值、立方根;(2)先把括號內通分相減,再計算分式的除法,除以一個分式,等于乘它的分子、分母交換位置.【詳解】(1)原式=3+﹣1﹣2×+1﹣2=3+﹣1﹣+1﹣2=1.(2)原式=[﹣]?=?=,當x=﹣2時,原式===2-1.【點睛】本題考查負指數(shù)冪、絕對值、零指數(shù)冪、特殊角的三角函數(shù)值、立方根以及分式的化簡求值,解題關鍵是熟練掌握以上性質和分式的混合運算.21、(1)詳見解析;(2)30.【解析】

(1)利用切線的性質得∠CEO=90°,再證明△OCA≌△OCE得到∠CAO=∠CEO=90°,然后根據(jù)切線的判定定理得到結論;(2)利用四邊形FOBE是菱形得到OF=OB=BF=EF,則可判定△OBE為等邊三角形,所以∠BOE=60°,然后利用互余可確定∠D的度數(shù).【詳解】(1)證明:∵CD與⊙O相切于點E,∴OE⊥CD,∴∠CEO=90°,又∵OC∥BE,∴∠COE=∠OEB,∠OBE=∠COA∵OE=OB,∴∠OEB=∠OBE,∴∠COE=∠COA,又∵OC=OC,OA=OE,∴△OCA≌△OCE(SAS),∴∠CAO=∠CEO=90°,又∵AB為⊙O的直徑,∴AC為⊙O的切線;(2)∵四邊形FOBE是菱形,∴OF=OB=BF=EF,∴OE=OB=BE,∴△OBE為等邊三角形,∴∠BOE=60°,而OE⊥CD,∴∠D=30°.【點睛】本題考查了切線的判定與性質:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經(jīng)過切點的半徑.判定切線時“連圓心和直線與圓的公共點”或“過圓心作這條直線的垂線”;有切線時,常常“遇到切點連圓心得半徑”.也考查了圓周角定理.22、(1)2000;(2)2米【解析】

(1)設未知數(shù),根據(jù)題目中的的量關系列出方程;(2)可以通過平移,也可以通過面積法,列出方程【詳解】解:(1)設該項綠化工程原計劃每天完成x米2,根據(jù)題意得:﹣=4解得:x=2000,經(jīng)檢驗,x=2000是原方程的解;答:該綠化項目原計劃每天完成2000平方米;(2)設人行道的寬度為x米,根據(jù)題意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=(不合題意,舍去).答:人行道的寬為2米.23、(1)證明見解析;(2)BD=2.【解析】

(1)連接OD,AB為⊙0的直徑得∠ADB=90°,由AB=AC,根據(jù)等腰三角形性質得AD平分BC,即DB=DC,則OD為△ABC的中位線,所以OD∥AC,而DE⊥AC,則OD⊥DE,然后根據(jù)切線的判定方法即可得到結論;

(2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出,從而求得BD?CD=AB?CE,由BD=CD,即可求得BD2=AB?CE,然后代入數(shù)據(jù)即可得到結果.【詳解】(1)證明:連接OD,如圖,∵AB為⊙0的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD為△ABC的中位線,∴OD∥AC,∵

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論