浙江省金華市六校聯(lián)誼市級名校2023年中考數(shù)學押題試卷含解析_第1頁
浙江省金華市六校聯(lián)誼市級名校2023年中考數(shù)學押題試卷含解析_第2頁
浙江省金華市六校聯(lián)誼市級名校2023年中考數(shù)學押題試卷含解析_第3頁
浙江省金華市六校聯(lián)誼市級名校2023年中考數(shù)學押題試卷含解析_第4頁
浙江省金華市六校聯(lián)誼市級名校2023年中考數(shù)學押題試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.全球芯片制造已經進入10納米到7納米器件的量產時代.中國自主研發(fā)的第一臺7納米刻蝕機,是芯片制造和微觀加工最核心的設備之一,7納米就是0.000000007米.數(shù)據0.000000007用科學記數(shù)法表示為()A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣102.的倒數(shù)的絕對值是()A. B. C. D.3.若分式有意義,則x的取值范圍是()A.x>3 B.x<3 C.x≠3 D.x=34.若圓錐的軸截面為等邊三角形,則稱此圓錐為正圓錐,則正圓錐側面展開圖的圓心角是()A.90°B.120°C.150°D.180°5.如圖,立體圖形的俯視圖是A. B. C. D.6.小明要去超市買甲、乙兩種糖果,然后混合成5千克混合糖果,已知甲種糖果的單價為a元/千克,乙種糖果的單價為b元/千克,且a>b.根據需要小明列出以下三種混合方案:(單位:千克)甲種糖果乙種糖果混合糖果方案1235方案2325方案32.52.55則最省錢的方案為()A.方案1 B.方案2C.方案3 D.三個方案費用相同7.下列運算結果正確的是()A.a3+a4=a7 B.a4÷a3=a C.a3?a2=2a3 D.(a3)3=a68.某一超市在“五?一”期間開展有獎促銷活動,每買100元商品可參加抽獎一次,中獎的概率為.小張這期間在該超市買商品獲得了三次抽獎機會,則小張()A.能中獎一次 B.能中獎兩次C.至少能中獎一次 D.中獎次數(shù)不能確定9.下面調查方式中,合適的是()A.調查你所在班級同學的體重,采用抽樣調查方式B.調查烏金塘水庫的水質情況,采用抽樣調査的方式C.調查《CBA聯(lián)賽》欄目在我市的收視率,采用普查的方式D.要了解全市初中學生的業(yè)余愛好,采用普查的方式10.用配方法解下列方程時,配方有錯誤的是()A.化為 B.化為C.化為 D.化為二、填空題(本大題共6個小題,每小題3分,共18分)11.用一個圓心角為120°,半徑為4的扇形作一個圓錐的側面,這個圓錐的底面圓的半徑為____.12.的算術平方根是_______.13.如圖,在矩形ABCD中,AD=2,CD=1,連接AC,以對角線AC為邊,按逆時針方向作矩形ABCD的相似矩形AB1C1C,再連接AC1,以對角線AC1為邊作矩形AB1C1C的相似矩形AB2C2C1,…,按此規(guī)律繼續(xù)下去,則矩形ABnCnCn-1的面積為________________.14.為了求1+2+22+23+…+22016+22017的值,可令S=1+2+22+23+…+22016+22017,則2S=2+22+23+24+…+22017+22018,因此2S﹣S=22018﹣1,所以1+22+23+…+22017=22018﹣1.請你仿照以上方法計算1+5+52+53+…+52017的值是_____.15.要使分式有意義,則x的取值范圍為_________.16.在一次射擊比賽中,某運動員前7次射擊共中62環(huán),如果他要打破89環(huán)(10次射擊)的記錄,那么第8次射擊他至少要打出_____環(huán)的成績.三、解答題(共8題,共72分)17.(8分)“機動車行駛到斑馬線要禮讓行人”等交通法規(guī)實施后,某校數(shù)學課外實踐小組就對這些交通法規(guī)的了解情況在全校隨機調查了部分學生,調查結果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調查結果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.請結合圖中所給信息解答下列問題:(1)本次共調查名學生;扇形統(tǒng)計圖中C所對應扇形的圓心角度數(shù)是;(2)補全條形統(tǒng)計圖;(3)該校共有800名學生,根據以上信息,請你估計全校學生中對這些交通法規(guī)“非常了解”的有多少名?(4)通過此次調查,數(shù)學課外實踐小組的學生對交通法規(guī)有了更多的認識,學校準備從組內的甲、乙、丙、丁四位學生中隨機抽取兩名學生參加市區(qū)交通法規(guī)競賽,請用列表或畫樹狀圖的方法求甲和乙兩名學生同時被選中的概率.18.(8分)如圖1,在長方形ABCD中,,,點P從A出發(fā),沿的路線運動,到D停止;點Q從D點出發(fā),沿路線運動,到A點停止.若P、Q兩點同時出發(fā),速度分別為每秒、,a秒時P、Q兩點同時改變速度,分別變?yōu)槊棵搿?P、Q兩點速度改變后一直保持此速度,直到停止),如圖2是的面積和運動時間(秒)的圖象.(1)求出a值;(2)設點P已行的路程為,點Q還剩的路程為,請分別求出改變速度后,和運動時間(秒)的關系式;(3)求P、Q兩點都在BC邊上,x為何值時P,Q兩點相距3cm?19.(8分)王老師對試卷講評課中九年級學生參與的深度與廣度進行評價調查,每位學生最終評價結果為主動質疑、獨立思考、專注聽講、講解題目四項中的一項.評價組隨機抽取了若干名初中學生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整),請根據圖中所給信息解答下列問題:(1)在這次評價中,一共抽查了

名學生;(2)在扇形統(tǒng)計圖中,項目“主動質疑”所在扇形的圓心角度數(shù)為

度;(3)請將頻數(shù)分布直方圖補充完整;(4)如果全市九年級學生有8000名,那么在試卷評講課中,“獨立思考”的九年級學生約有多少人?20.(8分)某中學為了提高學生的消防意識,舉行了消防知識競賽,所有參賽學生分別設有一、二、三等獎和紀念獎,獲獎情況已繪制成如圖所示的兩幅不完整的統(tǒng)計圖,根據圖中所經信息解答下列問題:(1)這次知識競賽共有多少名學生?(2)“二等獎”對應的扇形圓心角度數(shù),并將條形統(tǒng)計圖補充完整;(3)小華參加了此次的知識競賽,請你幫他求出獲得“一等獎或二等獎”的概率.21.(8分)解不等式組:,并將它的解集在數(shù)軸上表示出來.22.(10分)如圖1,拋物線l1:y=﹣x2+bx+3交x軸于點A、B,(點A在點B的左側),交y軸于點C,其對稱軸為x=1,拋物線l2經過點A,與x軸的另一個交點為E(5,0),交y軸于點D(0,﹣5).(1)求拋物線l2的函數(shù)表達式;(2)P為直線x=1上一動點,連接PA、PC,當PA=PC時,求點P的坐標;(3)M為拋物線l2上一動點,過點M作直線MN∥y軸(如圖2所示),交拋物線l1于點N,求點M自點A運動至點E的過程中,線段MN長度的最大值.23.(12分)八年級(1)班研究性學習小組為研究全校同學課外閱讀情況,在全校隨機邀請了部分同學參與問卷調查,統(tǒng)計同學們一個月閱讀課外書的數(shù)量,并繪制了以下統(tǒng)計圖.請根據圖中信息解決下列問題:(1)共有名同學參與問卷調查;(2)補全條形統(tǒng)計圖和扇形統(tǒng)計圖;(3)全校共有學生1500人,請估計該校學生一個月閱讀2本課外書的人數(shù)約為多少.24.如圖,足球場上守門員在處開出一高球,球從離地面1米的處飛出(在軸上),運動員乙在距點6米的處發(fā)現(xiàn)球在自己頭的正上方達到最高點,距地面約4米高,球落地后又一次彈起.據實驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.求足球開始飛出到第一次落地時,該拋物線的表達式.足球第一次落地點距守門員多少米?(?。┻\動員乙要搶到第二個落點,他應再向前跑多少米?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

本題根據科學記數(shù)法進行計算.【詳解】因為科學記數(shù)法的標準形式為a×(1≤|a|≤10且n為整數(shù)),因此0.000000007用科學記數(shù)法法可表示為7×,故選C.【點睛】本題主要考察了科學記數(shù)法,熟練掌握科學記數(shù)法是本題解題的關鍵.2、D【解析】

直接利用倒數(shù)的定義結合絕對值的性質分析得出答案.【詳解】解:?的倒數(shù)為?,則?的絕對值是:.故答案選:D.【點睛】本題考查了倒數(shù)的定義與絕對值的性質,解題的關鍵是熟練的掌握倒數(shù)的定義與絕對值的性質.3、C【解析】

試題分析:∵分式有意義,∴x﹣3≠0,∴x≠3;故選C.考點:分式有意義的條件.4、D【解析】試題分析:設正圓錐的底面半徑是r,則母線長是2r,底面周長是2πr,設正圓錐的側面展開圖的圓心角是n°,則2r·πr180考點:圓錐的計算.5、C【解析】試題分析:立體圖形的俯視圖是C.故選C.考點:簡單組合體的三視圖.6、A【解析】

求出三種方案混合糖果的單價,比較后即可得出結論.【詳解】方案1混合糖果的單價為,方案2混合糖果的單價為,方案3混合糖果的單價為.∵a>b,∴,∴方案1最省錢.故選:A.【點睛】本題考查了加權平均數(shù),求出各方案混合糖果的單價是解題的關鍵.7、B【解析】

分別根據同底數(shù)冪的乘法及除法法則、冪的乘方與積的乘方法則及合并同類項的法則對各選項進行逐一分析即可.【詳解】A.a3+a4≠a7,不是同類項,不能合并,本選項錯誤;B.a4÷a3=a4-3=a;,本選項正確;C.a3?a2=a5;,本選項錯誤;D.(a3)3=a9,本選項錯誤.故選B【點睛】本題考查的是同底數(shù)冪的乘法及除法法則、冪的乘方與積的乘方法則及合并同類項的法則等知識,比較簡單.8、D【解析】

由于中獎概率為,說明此事件為隨機事件,即可能發(fā)生,也可能不發(fā)生.【詳解】解:根據隨機事件的定義判定,中獎次數(shù)不能確定故選D.【點睛】解答此題要明確概率和事件的關系:,為不可能事件;為必然事件;為隨機事件.9、B【解析】

由普查得到的調查結果比較準確,但所費人力、物力和時間較多,而抽樣調查得到的調查結果比較近似.【詳解】A、調查你所在班級同學的體重,采用普查,故A不符合題意;B、調查烏金塘水庫的水質情況,無法普查,采用抽樣調査的方式,故B符合題意;C、調查《CBA聯(lián)賽》欄目在我市的收視率,調查范圍廣適合抽樣調查,故C不符合題意;D、要了解全市初中學生的業(yè)余愛好,調查范圍廣適合抽樣調查,故D不符合題意;故選B.【點睛】本題考查了抽樣調查和全面調查的區(qū)別,選擇普查還是抽樣調查要根據所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調查、無法進行普查、普查的意義或價值不大,應選擇抽樣調查,對于精確度要求高的調查,事關重大的調查往往選用普查.10、B【解析】

配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.【詳解】解:、,,,,故選項正確.、,,,,故選項錯誤.、,,,,,故選項正確.、,,,,.故選項正確.故選:.【點睛】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準確應用.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】試題分析:,解得r=.考點:弧長的計算.12、3【解析】

根據算術平方根定義,先化簡,再求的算術平方根.【詳解】因為=9所以的算術平方根是3故答案為3【點睛】此題主要考查了算術平方根的定義,解題需熟練掌握平方根和算術平方根的概念且區(qū)分清楚,才不容易出錯.要熟悉特殊數(shù)字0,1,-1的特殊性質.13、或【解析】試題分析:AC===,因為矩形都相似,且每相鄰兩個矩形的相似比=,∴=2×1=2,=,===,...,==...===.故答案為.考點:1.相似多邊形的性質;2.勾股定理;3.規(guī)律型;4.矩形的性質;5.綜合題.14、【解析】

根據上面的方法,可以令S=1+5+52+53+…+52017,則5S=5+52+53+…+52012+52018,再相減算出S的值即可.【詳解】解:令S=1+5+52+53+…+52017,則5S=5+52+53+…+52012+52018,5S﹣S=﹣1+52018,4S=52018﹣1,則S=,故答案為:.【點睛】此題參照例子,采用類比的方法就可以解決,注意這里由于都是5的次方,所以要用5S來達到抵消的目的.15、x≠1【解析】由題意得x-1≠0,∴x≠1.故答案為x≠1.16、8【解析】為了使第8次的環(huán)數(shù)最少,可使后面的2次射擊都達到最高環(huán)數(shù),即10環(huán).設第8次射擊環(huán)數(shù)為x環(huán),根據題意列出一元一次不等式62+x+2×10>89解之,得x>7x表示環(huán)數(shù),故x為正整數(shù)且x>7,則x的最小值為8即第8次至少應打8環(huán).點睛:本題考查的是一元一次不等式的應用.解決此類問題的關鍵是在理解題意的基礎上,建立與之相應的解決問題的“數(shù)學模型”——不等式,再由不等式的相關知識確定問題的答案.三、解答題(共8題,共72分)17、(1)60、90°;(2)補全條形圖見解析;(3)估計全校學生中對這些交通法規(guī)“非常了解”的有320名;(4)甲和乙兩名學生同時被選中的概率為.【解析】【分析】(1)用A的人數(shù)以及所占的百分比就可以求出調查的總人數(shù),用C的人數(shù)除以調查的總人數(shù)后再乘以360度即可得;(2)根據D的百分比求出D的人數(shù),繼而求出B的人數(shù),即可補全條形統(tǒng)計圖;(3)用“非常了解”所占的比例乘以800即可求得;(4)畫樹狀圖得到所有可能的情況,然后找出符合條件的情況用,利用概率公式進行求解即可得.【詳解】(1)本次調查的學生總人數(shù)為24÷40%=60人,扇形統(tǒng)計圖中C所對應扇形的圓心角度數(shù)是360°×=90°,故答案為60、90°;(2)D類型人數(shù)為60×5%=3,則B類型人數(shù)為60﹣(24+15+3)=18,補全條形圖如下:(3)估計全校學生中對這些交通法規(guī)“非常了解”的有800×40%=320名;(4)畫樹狀圖為:共有12種等可能的結果數(shù),其中甲和乙兩名學生同時被選中的結果數(shù)為2,所以甲和乙兩名學生同時被選中的概率為.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖、列表法或樹狀圖法求概率、用樣本估計總體等,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中找到必要的有關聯(lián)的信息進行解題是關鍵.18、(1)6;(2);;(3)10或;【解析】

(1)根據圖象變化確定a秒時,P點位置,利用面積求a;(2)P、Q兩點的函數(shù)關系式都是在運動6秒的基礎上得到的,因此注意在總時間內減去6秒;(3)以(2)為基礎可知,兩個點相距3cm分為相遇前相距或相遇后相距,因此由(2)可列方程.【詳解】(1)由圖象可知,當點P在BC上運動時,△APD的面積保持不變,則a秒時,點P在AB上.,∴AP=6,則a=6;(2)由(1)6秒后點P變速,則點P已行的路程為y1=6+2(x﹣6)=2x﹣6,∵Q點路程總長為34cm,第6秒時已經走12cm,故點Q還剩的路程為y2=34﹣12﹣;(3)當P、Q兩點相遇前相距3cm時,﹣(2x﹣6)=3,解得x=10,當P、Q兩點相遇后相距3cm時,(2x﹣6)﹣()=3,解得x=,∴當x=10或時,P、Q兩點相距3cm【點睛】本題是雙動點問題,解答時應注意分析圖象的變化與動點運動位置之間的關系.列函數(shù)關系式時,要考慮到時間x的連續(xù)性才能直接列出函數(shù)關系式.19、(1)560;(2)54;(3)詳見解析;(4)獨立思考的學生約有840人.【解析】

(1)由“專注聽講”的學生人數(shù)除以占的百分比求出調查學生總數(shù)即可;(2)由“主動質疑”占的百分比乘以360°即可得到結果;(3)求出“講解題目”的學生數(shù),補全統(tǒng)計圖即可;(4)求出“獨立思考”學生占的百分比,乘以2800即可得到結果.【詳解】(1)根據題意得:224÷40%=560(名),則在這次評價中,一個調查了560名學生;故答案為:560;(2)根據題意得:×360°=54°,則在扇形統(tǒng)計圖中,項目“主動質疑”所在的扇形的圓心角的度數(shù)為54度;故答案為:54;(3)“講解題目”的人數(shù)為560-(84+168+224)=84,補全統(tǒng)計圖如下:(4)根據題意得:2800×(人),則“獨立思考”的學生約有840人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據;扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?0、(1)200;(2)72°,作圖見解析;(3).【解析】

(1)用一等獎的人數(shù)除以所占的百分比求出總人數(shù);(2)用總人數(shù)乘以二等獎的人數(shù)所占的百分比求出二等獎的人數(shù),補全統(tǒng)計圖,再用360°乘以二等獎的人數(shù)所占的百分比即可求出“二等獎”對應的扇形圓心角度數(shù);(3)用獲得一等獎和二等獎的人數(shù)除以總人數(shù)即可得出答案.【詳解】解:(1)這次知識競賽共有學生=200(名);(2)二等獎的人數(shù)是:200×(1﹣10%﹣24%﹣46%)=40(人),補圖如下:“二等獎”對應的扇形圓心角度數(shù)是:360°×=72°;(3)小華獲得“一等獎或二等獎”的概率是:=.【點睛】本題主要考查了條形統(tǒng)計圖以及扇形統(tǒng)計圖,利用統(tǒng)計圖獲取信息是解本題的關鍵.21、-1≤x<4,在數(shù)軸上表示見解析.【解析】試題分析:分別求出各不等式的解集,再求出其公共解集,并在數(shù)軸上表示出來即可.試題解析:,由①得,x<4;由②得,x??1.故不等式組的解集為:?1?x<4.在數(shù)軸上表示為:22、(1)拋物線l2的函數(shù)表達式;y=x2﹣4x﹣1;(2)P點坐標為(1,1);(3)在點M自點A運動至點E的過程中,線段MN長度的最大值為12.1.【解析】

(1)由拋物線l1的對稱軸求出b的值,即可得出拋物線l1的解析式,從而得出點A、點B的坐標,由點B、點E、點D的坐標求出拋物線l2的解析式即可;(2)作CH⊥PG交直線PG于點H,設點P的坐標為(1,y),求出點C的坐標,進而得出CH=1,PH=|3﹣y|,PG=|y|,AG=2,由PA=PC可得PA2=PC2,由勾股定理分別將PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)設出點M的坐標,求出兩個拋物線交點的橫坐標分別為﹣1,4,①當﹣1<x≤4時,點M位于點N的下方,表示出MN的長度為關于x的二次函數(shù),在x的范圍內求二次函數(shù)的最值;②當4<x≤1時,點M位于點N的上方,同理求出此時MN的最大值,取二者較大值,即可得出MN的最大值.【詳解】(1)∵拋物線l1:y=﹣x2+bx+3對稱軸為x=1,∴x=﹣=1,b=2,∴拋物線l1的函數(shù)表達式為:y=﹣x2+2x+3,當y=0時,﹣x2+2x+3=0,解得:x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),設拋物線l2的函數(shù)表達式;y=a(x﹣1)(x+1),把D(0,﹣1)代入得:﹣1a=﹣1,a=1,∴拋物線l2的函數(shù)表達式;y=x2﹣4x﹣1;(2)作CH⊥PG交直線PG于點H,設P點坐標為(1,y),由(1)可得C點坐標為(0,3),∴CH=1,PH=|3﹣y|,PG=|y|,AG=2,∴PC2=12+(3﹣y)2=y2﹣6y+10,PA2==y2+4,∵PC=PA,∴PA2=PC2,∴y2﹣6y+10=y2+4,解得y=1,∴P點坐標為(1,1);(3)由題意可設M(x,x2﹣4x﹣1),∵MN∥y軸,∴N(x,﹣x2+2x+3),令﹣x2+2x+3=x2﹣4x﹣1,可解得x=﹣1或x=4,①當﹣1<x≤4時,MN=(﹣x2+2x+3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論