廣東省茂名市重點(diǎn)名校2023年中考數(shù)學(xué)猜題卷含解析_第1頁
廣東省茂名市重點(diǎn)名校2023年中考數(shù)學(xué)猜題卷含解析_第2頁
廣東省茂名市重點(diǎn)名校2023年中考數(shù)學(xué)猜題卷含解析_第3頁
廣東省茂名市重點(diǎn)名校2023年中考數(shù)學(xué)猜題卷含解析_第4頁
廣東省茂名市重點(diǎn)名校2023年中考數(shù)學(xué)猜題卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,l1∥l2,AF:FB=3:5,BC:CD=3:2,則AE:EC=()A.5:2 B.4:3 C.2:1 D.3:22.下面四個(gè)幾何體中,左視圖是四邊形的幾何體共有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)3.如圖所示的四邊形,與選項(xiàng)中的一個(gè)四邊形相似,這個(gè)四邊形是()A. B. C. D.4.如圖,將圖1中陰影部分拼成圖2,根據(jù)兩個(gè)圖形中陰影部分的關(guān)系,可以驗(yàn)證下列哪個(gè)計(jì)算公式()A.(a+b)(a﹣b)=a2﹣b2 B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2 D.(a+b)2=(a﹣b)2+4ab5.已知等邊三角形的內(nèi)切圓半徑,外接圓半徑和高的比是()A.1:2: B.2:3:4 C.1::2 D.1:2:36.下列每組數(shù)分別是三根小木棒的長度,用它們能擺成三角形的是()A.3cm,4cm,8cmB.8cm,7cm,15cmC.13cm,12cm,20cmD.5cm,5cm,11cm7.-3的倒數(shù)是()A.3 B.13 C.-18.下列各式中的變形,錯(cuò)誤的是(()A.2-3x=-23x B.-b9.下面的圖形是軸對稱圖形,又是中心對稱圖形的有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)10.函數(shù)y=中自變量x的取值范圍是A.x≥0 B.x≥4 C.x≤4 D.x>4二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.函數(shù)y=中自變量x的取值范圍是_____.12.已知,(),請用計(jì)算器計(jì)算當(dāng)時(shí),、的若干個(gè)值,并由此歸納出當(dāng)時(shí),、間的大小關(guān)系為______.13.某廣場要做一個(gè)由若干盆花組成的形如正六邊形的花壇,每條邊(包括兩個(gè)頂點(diǎn))有n(n>1)盆花,設(shè)這個(gè)花壇邊上的花盆的總數(shù)為S,請觀察圖中的規(guī)律:按上規(guī)律推斷,S與n的關(guān)系是________________________________.14.如圖(1),將一個(gè)正六邊形各邊延長,構(gòu)成一個(gè)正六角星形AFBDCE,它的面積為1;取△ABC和△DEF各邊中點(diǎn),連接成正六角星形A1F1B1D1C1E1,如圖(2)中陰影部分;取△A1B1C1和△D1E1F1各邊中點(diǎn),連接成正六角星形A2F2B2D2C2E2,如圖(3)中陰影部分;如此下去…,則正六角星形A4F4B4D4C4E4的面積為_________________.15.一般地,當(dāng)α、β為任意角時(shí),sin(α+β)與sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα?cosβ+cosα?sinβ;sin(α﹣β)=sinα?cosβ﹣cosα?sinβ.例如sin90°=sin(60°+30°)=sin60°?cos30°+cos60°?sin30°==1.類似地,可以求得sin15°的值是_______.16.如圖,在矩形ABCD中,點(diǎn)E是邊CD的中點(diǎn),將△ADE沿AE折疊后得到△AFE,且點(diǎn)F在矩形ABCD內(nèi)部.將AF延長交邊BC于點(diǎn)G.若,則(用含k的代數(shù)式表示).三、解答題(共8題,共72分)17.(8分)在△ABC中,AB=AC,∠BAC=α,點(diǎn)P是△ABC內(nèi)一點(diǎn),且∠PAC+∠PCA=,連接PB,試探究PA、PB、PC滿足的等量關(guān)系.(1)當(dāng)α=60°時(shí),將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△ACP′,連接PP′,如圖1所示.由△ABP≌△ACP′可以證得△APP′是等邊三角形,再由∠PAC+∠PCA=30°可得∠APC的大小為度,進(jìn)而得到△CPP′是直角三角形,這樣可以得到PA、PB、PC滿足的等量關(guān)系為;(2)如圖2,當(dāng)α=120°時(shí),參考(1)中的方法,探究PA、PB、PC滿足的等量關(guān)系,并給出證明;(3)PA、PB、PC滿足的等量關(guān)系為.18.(8分)閱讀材料:各類方程的解法求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來解.求解分式方程,把它轉(zhuǎn)化為整式方程來解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過因式分解把它轉(zhuǎn)化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.問題:方程x3+x2-2x=0的解是x1=0,x2=,x3=;拓展:用“轉(zhuǎn)化”思想求方程的解;應(yīng)用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點(diǎn)B,沿草坪邊沿BA,AD走到點(diǎn)P處,把長繩PB段拉直并固定在點(diǎn)P,然后沿草坪邊沿PD、DC走到點(diǎn)C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點(diǎn)C.求AP的長.19.(8分)已知2是關(guān)于x的方程x2﹣2mx+3m=0的一個(gè)根,且這個(gè)方程的兩個(gè)根恰好是等腰△ABC的兩條邊長,則△ABC的周長為_____.20.(8分)解不等式組,并將解集在數(shù)軸上表示出來.21.(8分)一輛汽車行駛時(shí)的耗油量為0.1升/千米,如圖是油箱剩余油量(升)關(guān)于加滿油后已行駛的路程(千米)的函數(shù)圖象.根據(jù)圖象,直接寫出汽車行駛400千米時(shí),油箱內(nèi)的剩余油量,并計(jì)算加滿油時(shí)油箱的油量;求關(guān)于的函數(shù)關(guān)系式,并計(jì)算該汽車在剩余油量5升時(shí),已行駛的路程.22.(10分)如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).求證:△ACE≌△BCD;若AD=5,BD=12,求DE的長.23.(12分)解方程(1)x1﹣1x﹣1=0(1)(x+1)1=4(x﹣1)1.24.已知,平面直角坐標(biāo)系中的點(diǎn)A(a,1),t=ab﹣a2﹣b2(a,b是實(shí)數(shù))(1)若關(guān)于x的反比例函數(shù)y=過點(diǎn)A,求t的取值范圍.(2)若關(guān)于x的一次函數(shù)y=bx過點(diǎn)A,求t的取值范圍.(3)若關(guān)于x的二次函數(shù)y=x2+bx+b2過點(diǎn)A,求t的取值范圍.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

依據(jù)平行線分線段成比例定理,即可得到AG=3x,BD=5x,CD=BD=2x,再根據(jù)平行線分線段成比例定理,即可得出AE與EC的比值.【詳解】∵l1∥l2,∴,設(shè)AG=3x,BD=5x,∵BC:CD=3:2,∴CD=BD=2x,∵AG∥CD,∴.故選D.【點(diǎn)睛】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對應(yīng)線段成比例.平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應(yīng)成比例.2、B【解析】簡單幾何體的三視圖.【分析】左視圖是從左邊看到的圖形,因?yàn)閳A柱的左視圖是矩形,圓錐的左視圖是等腰三角形,球的左視圖是圓,正方體的左視圖是正方形,所以,左視圖是四邊形的幾何體是圓柱和正方體2個(gè).故選B.3、D【解析】

根據(jù)勾股定理求出四邊形第四條邊的長度,進(jìn)而求出四邊形四條邊之比,根據(jù)相似多邊形的性質(zhì)判斷即可.【詳解】解:作AE⊥BC于E,則四邊形AECD為矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四邊形ABCD的四條邊之比為1:3:5:5,D選項(xiàng)中,四條邊之比為1:3:5:5,且對應(yīng)角相等,故選D.【點(diǎn)睛】本題考查的是相似多邊形的判定和性質(zhì),掌握相似多邊形的對應(yīng)邊的比相等是解題的關(guān)鍵.4、B【解析】

根據(jù)圖形確定出圖1與圖2中陰影部分的面積,由此即可解答.【詳解】∵圖1中陰影部分的面積為:(a﹣b)2;圖2中陰影部分的面積為:a2﹣2ab+b2;∴(a﹣b)2=a2﹣2ab+b2,故選B.【點(diǎn)睛】本題考查了完全平方公式的幾何背景,用不同的方法表示出陰影部分的面積是解題的關(guān)鍵.5、D【解析】試題分析:圖中內(nèi)切圓半徑是OD,外接圓的半徑是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,則OD:OC=1:2,因而OD:OC:AD=1:2:1,所以內(nèi)切圓半徑,外接圓半徑和高的比是1:2:1.故選D.考點(diǎn):正多邊形和圓.6、C【解析】

根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進(jìn)行分析.【詳解】A、3+4<8,不能組成三角形;B、8+7=15,不能組成三角形;C、13+12>20,能夠組成三角形;D、5+5<11,不能組成三角形.故選:C.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系,關(guān)鍵是靈活運(yùn)用三角形三邊關(guān)系.7、C【解析】

由互為倒數(shù)的兩數(shù)之積為1,即可求解.【詳解】∵-3×-13=1,∴故選C8、D【解析】

根據(jù)分式的分子分母都乘以(或除以)同一個(gè)不為零的數(shù)(整式),分式的值不變,可得答案.【詳解】A、2-3B、分子、分母同時(shí)乘以﹣1,分式的值不發(fā)生變化,故B正確;C、分子、分母同時(shí)乘以3,分式的值不發(fā)生變化,故C正確;D、yx≠y故選:D.【點(diǎn)睛】本題考查了分式的基本性質(zhì),分式的分子分母都乘以(或除以)同一個(gè)不為零的數(shù)(整式),分式的值不變.9、B【解析】

根據(jù)軸對稱圖形和中心對稱圖形的定義對各個(gè)圖形進(jìn)行逐一分析即可.【詳解】解:第一個(gè)圖形是軸對稱圖形,但不是中心對稱圖形;第二個(gè)圖形是中心對稱圖形,但不是軸對稱圖形;第三個(gè)圖形既是軸對稱圖形,又是中心對稱圖形;第四個(gè)圖形即是軸對稱圖形,又是中心對稱圖形;∴既是軸對稱圖形,又是中心對稱圖形的有兩個(gè),故選:B.【點(diǎn)睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180°后兩部分重合.10、B【解析】

根據(jù)二次根式的性質(zhì),被開方數(shù)大于等于0,列不等式求解.【詳解】根據(jù)題意得:x﹣1≥0,解得x≥1,則自變量x的取值范圍是x≥1.故選B.【點(diǎn)睛】本題主要考查函數(shù)自變量的取值范圍的知識點(diǎn),注意:二次根式的被開方數(shù)是非負(fù)數(shù).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、x≥﹣且x≠1.【解析】

根據(jù)分式有意義的條件、二次根式有意義的條件列式計(jì)算.【詳解】由題意得,2x+3≥0,x-1≠0,解得,x≥-且x≠1,故答案為:x≥-且x≠1.【點(diǎn)睛】本題考查的是函數(shù)自變量的取值范圍,①當(dāng)表達(dá)式的分母不含有自變量時(shí),自變量取全體實(shí)數(shù).②當(dāng)表達(dá)式的分母中含有自變量時(shí),自變量取值要使分母不為零.③當(dāng)函數(shù)的表達(dá)式是偶次根式時(shí),自變量的取值范圍必須使被開方數(shù)不小于零.12、【解析】試題分析:當(dāng)n=3時(shí),A=≈0.3178,B=1,A<B;當(dāng)n=4時(shí),A=≈0.2679,B=≈0.4142,A<B;當(dāng)n=5時(shí),A=≈0.2631,B=≈0.3178,A<B;當(dāng)n=6時(shí),A=≈0.2134,B=≈0.2679,A<B;……以此類推,隨著n的增大,a在不斷變小,而b的變化比a慢兩個(gè)數(shù),所以可知當(dāng)n≥3時(shí),A、B的關(guān)系始終是A<B.13、S=1n-1【解析】觀察可得,n=2時(shí),S=1;

n=3時(shí),S=1+(3-2)×1=12;

n=4時(shí),S=1+(4-2)×1=18;

…;

所以,S與n的關(guān)系是:S=1+(n-2)×1=1n-1.

故答案為S=1n-1.【點(diǎn)睛】本題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.14、【解析】∵正六角星形A2F2B2D2C2E2邊長是正六角星形A1F1B1D1C1E邊長的,∴正六角星形A2F2B2D2C2E2面積是正六角星形A1F1B1D1C1E面積的.同理∵正六角星形A4F4B4D4C4E4邊長是正六角星形A1F1B1D1C1E邊長的,∴正六角星形A4F4B4D4C4E4面積是正六角星形A1F1B1D1C1E面積的.15、.【解析】試題分析:sin15°=sin(60°﹣45°)=sin60°?cos45°﹣cos60°?sin45°==.故答案為.考點(diǎn):特殊角的三角函數(shù)值;新定義.16、?!窘馕觥吭囶}分析:如圖,連接EG,∵,∴設(shè),則?!唿c(diǎn)E是邊CD的中點(diǎn),∴?!摺鰽DE沿AE折疊后得到△AFE,∴。易證△EFG≌△ECG(HL),∴?!??!嘣赗t△ABG中,由勾股定理得:,即?!唷!啵ㄖ蝗≌担?。∴。三、解答題(共8題,共72分)17、(1)150,(1)證明見解析(3)【解析】

(1)根據(jù)旋轉(zhuǎn)變換的性質(zhì)得到△PAP′為等邊三角形,得到∠P′PC=90°,根據(jù)勾股定理解答即可;(1)如圖1,作將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)110°得到△ACP′,連接PP′,作AD⊥PP′于D,根據(jù)余弦的定義得到PP′=PA,根據(jù)勾股定理解答即可;(3)與(1)類似,根據(jù)旋轉(zhuǎn)變換的性質(zhì)、勾股定理和余弦、正弦的關(guān)系計(jì)算即可.試題解析:【詳解】解:(1)∵△ABP≌△ACP′,∴AP=AP′,由旋轉(zhuǎn)變換的性質(zhì)可知,∠PAP′=60°,P′C=PB,∴△PAP′為等邊三角形,∴∠APP′=60°,∵∠PAC+∠PCA=×60°=30°,∴∠APC=150°,∴∠P′PC=90°,∴PP′1+PC1=P′C1,∴PA1+PC1=PB1,故答案為150,PA1+PC1=PB1;(1)如圖,作°,使,連接,.過點(diǎn)A作AD⊥于D點(diǎn).∵°,即,∴.∵AB=AC,,∴.∴,°.∵AD⊥,∴°.∴在Rt中,.∴.∵°,∴°.∴°.∴在Rt中,.∴;(3)如圖1,與(1)的方法類似,作將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α得到△ACP′,連接PP′,作AD⊥PP′于D,由旋轉(zhuǎn)變換的性質(zhì)可知,∠PAP′=α,P′C=PB,∴∠APP′=90°-,∵∠PAC+∠PCA=,∴∠APC=180°-,∴∠P′PC=(180°-)-(90°-)=90°,∴PP′1+PC1=P′C1,∵∠APP′=90°-,∴PD=PA?cos(90°-)=PA?sin,∴PP′=1PA?sin,∴4PA1sin1+PC1=PB1,故答案為4PA1sin1+PC1=PB1.【點(diǎn)睛】本題考查的是旋轉(zhuǎn)變換的性質(zhì)、等邊三角形的性質(zhì)、勾股定理的應(yīng)用,掌握等邊三角形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)、靈活運(yùn)用類比思想是解題的關(guān)鍵.18、(1)-2,1;(2)x=3;(3)4m.【解析】

(1)因式分解多項(xiàng)式,然后得結(jié)論;

(2)兩邊平方,把無理方程轉(zhuǎn)化為整式方程,求解,注意驗(yàn)根;

(3)設(shè)AP的長為xm,根據(jù)勾股定理和BP+CP=10,可列出方程,由于方程含有根號,兩邊平方,把無理方程轉(zhuǎn)化為整式方程,求解,【詳解】解:(1),,所以或或,,;故答案為,1;(2),方程的兩邊平方,得即或,,當(dāng)時(shí),,所以不是原方程的解.所以方程的解是;(3)因?yàn)樗倪呅问蔷匦?,所以,設(shè),則因?yàn)?,,兩邊平方,得整理,得兩邊平方并整理,得即所以.?jīng)檢驗(yàn),是方程的解.答:的長為.【點(diǎn)睛】考查了轉(zhuǎn)化的思想方法,一元二次方程的解法.解無理方程是注意到驗(yàn)根.解決(3)時(shí),根據(jù)勾股定理和繩長,列出方程是關(guān)鍵.19、11【解析】

將x=2代入方程找出關(guān)于m的一元一次方程,解一元一次方程即可得出m的值,將m的值代入原方程解方程找出方程的解,再根據(jù)等腰三角形的性質(zhì)結(jié)合三角形的三邊關(guān)系即可得出三角形的三條邊,根據(jù)三角形的周長公式即可得出結(jié)論.【詳解】將x=2代入方程,得:1﹣1m+3m=0,解得:m=1.當(dāng)m=1時(shí),原方程為x2﹣8x+12=(x﹣2)(x﹣6)=0,解得:x1=2,x2=6,∵2+2=1<6,∴此等腰三角形的三邊為6、6、2,∴此等腰三角形的周長C=6+6+2=11.【點(diǎn)睛】考點(diǎn):根與系數(shù)的關(guān)系;一元二次方程的解;等腰三角形的性質(zhì)20、原不等式組的解集為﹣4<x≤1,在數(shù)軸上表示見解析.【解析】分析:根據(jù)解一元一次不等式組的步驟,大小小大中間找,可得答案詳解:解不等式①,得x>﹣4,解不等式②,得x≤1,把不等式①②的解集在數(shù)軸上表示如圖,原不等式組的解集為﹣4<x≤1.點(diǎn)睛:本題考查了解一元一次不等式組,利用不等式組的解集的表示方法是解題關(guān)鍵.21、(1)汽車行駛400千米,剩余油量30升,加滿油時(shí),油量為70升;(2)已行駛的路程為650千米.【解析】

(1)觀察圖象,即可得到油箱內(nèi)的剩余油量,根據(jù)耗油量計(jì)算出加滿油時(shí)油箱的油量;用待定系數(shù)法求出一次函數(shù)解析式,再代入進(jìn)行運(yùn)算即可.【詳解】(1)汽車行駛400千米,剩余油量30升,即加滿油時(shí),油量為70升.(2)設(shè),把點(diǎn),坐標(biāo)分別代入得,,∴,當(dāng)時(shí),,即已行駛的路程為650千米.【點(diǎn)睛】本題主要考查了待定系數(shù)法求一次函數(shù)解析式,一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征等,關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式.22、(1)證明見解析(2)13【解析】

(1)先根據(jù)同角的余角相等得到∠ACE=∠BCD,再結(jié)合等腰直角三角形的性質(zhì)即可證得結(jié)論;(2)根據(jù)全等三角形的性質(zhì)可得AE=BD,∠EAC=∠B=45°,即可證得△AED是直角三角形,再利用勾股定理即可求出DE的長.【詳解】(1)∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA∴∠ACE=∠BCD∴△ACE≌△BCD(SAS);(2)∵△ACB和△ECD都是等腰直角三角形∴∠BAC=∠B=45°∵△ACE≌△BCD∴AE=BD=12,∠EAC=∠B=45°∴∠EAD=∠EAC+∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論