2023屆四川省廣安市廣安中學(xué)數(shù)學(xué)高二第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第1頁
2023屆四川省廣安市廣安中學(xué)數(shù)學(xué)高二第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第2頁
2023屆四川省廣安市廣安中學(xué)數(shù)學(xué)高二第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第3頁
2023屆四川省廣安市廣安中學(xué)數(shù)學(xué)高二第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第4頁
2023屆四川省廣安市廣安中學(xué)數(shù)學(xué)高二第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023高二下數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)在定義域內(nèi)單調(diào),則的取值范圍是()A. B. C. D.2.已知,將函數(shù)的圖象向左平移個單位,得到的圖象關(guān)于軸對稱,則為()A. B. C. D.3.若,則等于()A.9 B.8 C.7 D.64.已知圓C:(x-a)2+(y-b)2=1,平面區(qū)域Ω:x+y-6≤0x-y+4≥0y≥0A.-∞,-73∪75,+∞5.設(shè),則的值為()A. B.1 C.0 D.-16.已知,,均為正實數(shù),則,,的值()A.都大于1 B.都小于1C.至多有一個不小于1 D.至少有一個不小于17.已知實數(shù)滿足則的最大值是()A.-2 B.-1 C.1 D.28.正方形ABCD中,點E是DC的中點,點F是BC的一個三等分點,那么()A. B.C. D..9.已知函數(shù)的最小正周期是,若其圖像向右平移個單位后得到的函數(shù)為奇函數(shù),則函數(shù)的圖像()A.關(guān)于點對稱 B.關(guān)于直線對稱C.關(guān)于點對稱 D.關(guān)于直線對稱10.雙曲線的離心率為,拋物線的準(zhǔn)線與雙曲線的漸近線交于點,(為坐標(biāo)原點)的面積為4,則拋物線的方程為()A. B. C. D.11.人造地球衛(wèi)星繞地球運行遵循開普勒行星運動定律:衛(wèi)星在以地球為焦點的橢圓軌道上繞地球運行時,其運行速度是變化的,速度的變化服從面積守恒規(guī)律,即衛(wèi)星的向徑(衛(wèi)星至地球的連線)在相同的時間內(nèi)掃過的面積相等.設(shè)橢圓的長軸長、焦距分別為2a,2c.李明根據(jù)所學(xué)的橢圓知識,得到下列結(jié)論:①衛(wèi)星向徑的最小值為a-c,最大值為a+c;②衛(wèi)星向徑的最小值與最大值的比值越小,橢圓軌道越扁;③衛(wèi)星運行速度在近地點時最小,在遠(yuǎn)地點時最大其中正確結(jié)論的個數(shù)是A.0 B.1 C.2 D.312.已知點M的極坐標(biāo)為,下列所給出的四個坐標(biāo)中能表示點M的坐標(biāo)是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則的解集是______.14.函數(shù)的圖象在處的切線與直線互相垂直,則_____.15.做一個無蓋的圓柱形水桶,若要使水桶的容積是,且用料最省,則水桶的底面半徑為____.16.在體積為9的斜三棱柱ABC—A1B1C1中,S是C1C上的一點,S—ABC的體積為2,則三棱錐S—A1B1C1的體積為___.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)中央政府為了應(yīng)對因人口老齡化而造成的勞動力短缺等問題,擬定出臺“延遲退休年齡政策”.為了了解人們]對“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在15∽65歲的人群中隨機調(diào)查100人,調(diào)査數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計結(jié)果如下:年齡支持“延遲退休”的人數(shù)155152817(1)由以上統(tǒng)計數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為以45歲為分界點的不同人群對“延遲退休年齡政策”的支持度有差異;45歲以下45歲以上總計支持不支持總計(2)若以45歲為分界點,從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項活動.現(xiàn)從這8人中隨機抽2人①抽到1人是45歲以下時,求抽到的另一人是45歲以上的概率.②記抽到45歲以上的人數(shù)為,求隨機變量的分布列及數(shù)學(xué)期望.參考數(shù)據(jù):0.1000.0500.0100.0012.7063.8416.63510.828,其中18.(12分)某校舉辦《國學(xué)》知識問答中,有一道題目有5個選項A,B,C,D,E,并告知考生正確選項個數(shù)不超過3個,滿分5分,若該題正確答案為,賦分標(biāo)準(zhǔn)為“選對1個得2分,選對2個得4分,選對3個得5分,每選錯1個扣3分,最低得分為0分”.假定考生作答的答案中的選項個數(shù)不超過3個.(1)若張小雷同學(xué)無法判斷所有選項,只能猜,他在猶豫答案是“任選1個選項作為答案”或者“任選2個選項作為答案”或者“任選3個選項作為答案”,以得分期望為決策依據(jù),則他的最佳方案是哪一種?說明理由.(2)已知有10名同學(xué)的答案都是3個選項,且他們的答案互不相同,他們此題的平均得分為x分.現(xiàn)從這10名同學(xué)中任選3名,計算得到這3名考生此題得分的平均分為y分,試求的概率.19.(12分)已知函數(shù),其中.(1)討論的單調(diào)性;(2)當(dāng)時,恒成立,求的值;(3)確定的所有可能取值,使得對任意的,恒成立.20.(12分)某學(xué)校為調(diào)查高三年級學(xué)生的身高情況,按隨機抽樣的方法抽取80名學(xué)生,得到男生身高情況的頻率分布直方圖(如圖(1))和女生身高情況的頻率分布直方圖(如圖(2)).已知圖(1)中身高在的男生有16名.(1)試問在抽取的學(xué)生中,男、女生各有多少名?(2)根據(jù)頻率分布直方圖,完成下面的列聯(lián)表,并判斷能有多大(百分?jǐn)?shù))的把握認(rèn)為身高與性別有關(guān)?身高身高總計男生女生總計參考公式:,其中參考數(shù)據(jù):0.400.250.100.0100.0010.7081.3232.7066.63510.82821.(12分)已知函數(shù),.(1)當(dāng)時,求函數(shù)的最小值;(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)a的取值范圍.22.(10分)已知在中,角,,的對邊分別為,,,的面積為.(1)求證:;(2)若,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

采用等價轉(zhuǎn)化的思想,可得在恒成立,然后分離參數(shù),對新函數(shù)的值域與比較,可得結(jié)果.【詳解】,依題意可得:函數(shù)在定義域內(nèi)只能單調(diào)遞增,恒成立,即恒成立,,,故選:A【點睛】本題考查根據(jù)函數(shù)單調(diào)性求參數(shù)范圍,熟練使用等價轉(zhuǎn)化以及分離參數(shù)的方法,屬基礎(chǔ)題.2、D【解析】

由平移后,得,再由圖象關(guān)于軸對稱,得,解之即可.【詳解】將函數(shù)的圖象向左平移個單位,得圖象關(guān)于軸對稱,即又時滿足要求.故選:D【點睛】本題考查了三角函數(shù)圖象的平移和函數(shù)的對稱性,屬于中檔題.3、B【解析】分析:根據(jù)組合數(shù)的計算公式,即可求解答案.詳解:由題意且,,解得,故選B.點睛:本題主要考查了組合數(shù)的計算公式的應(yīng)用,其中熟記組合數(shù)的計算公式是解答的關(guān)鍵,著重考查了推理與計算能力.4、A【解析】

分析:畫出可行域,由可行域結(jié)合圓C與x軸相切,得到b=1且-3≤a≤5,從而可得結(jié)果.詳解:畫出可行域如圖,由圓的標(biāo)準(zhǔn)方程可得圓心C(a,b),半徑為1因為圓C與x軸相切,所以b=1,直線y=1分別與直線x+y-6=0與x-y+4=0交于點B5,1所以-3≤a≤5,圓心C(a,b)與點(2,8-3≤a<2時,k∈72<a≤5時k∈-所以圓心C(a,b)與點(2,8)連線斜率的取值范圍是-點睛:本題主要考查可行域、含參數(shù)目標(biāo)函數(shù)最優(yōu)解,屬于中檔題.含參變量的線性規(guī)劃問題是近年來高考命題的熱點,由于參數(shù)的引入,提高了思維的技巧、增加了解題的難度,此類問題的存在增加了探索問題的動態(tài)性和開放性,此類問題一般從目標(biāo)函數(shù)的結(jié)論入手,對目標(biāo)函數(shù)變化過程進(jìn)行詳細(xì)分析,對變化過程中的相關(guān)量的準(zhǔn)確定位,是求最優(yōu)解的關(guān)鍵.5、C【解析】

首先采用賦值法,令,代入求值,通分后即得結(jié)果.【詳解】令,,,.故選:C【點睛】本題考查二項式定理和二項式系數(shù)的性質(zhì),涉及系數(shù)和的時候可以采用賦值法求和,本題意在考查化歸轉(zhuǎn)化和計算求解能力,屬于中檔題型.6、D【解析】分析:對每一個選項逐一判斷得解.詳解:對于選項A,如果a=1,b=2,則,所以選項A是錯誤的.對于選項B,如果a=2,b=1,則,所以選項B是錯誤的.對于選項C,如果a=4,b=2,c=1,則,所以選項C是錯誤的.對于選項D,假設(shè),則,顯然二者矛盾,所以假設(shè)不成立,所以選項D是正確的.故答案為:D.點睛:(1)本題主要考查反證法,意在考查學(xué)生對該知識的掌握水平.(2)三個數(shù)至少有一個不小于1的否定是7、C【解析】作出可行域,如圖內(nèi)部(含兩邊),作直線,向上平移直線,增加,當(dāng)過點時,是最大值.故選C.8、D【解析】

用向量的加法和數(shù)乘法則運算?!驹斀狻坑深}意:點E是DC的中點,點F是BC的一個三等分點,∴。故選:D?!军c睛】本題考查向量的線性運算,解題時可根據(jù)加法法則,從向量的起點到終點,然后結(jié)合向量的數(shù)乘運算即可得。9、D【解析】

由最小正周期為可得,平移后的函數(shù)為,利用奇偶性得到,即可得到,則,進(jìn)而判斷其對稱性即可【詳解】由題,因為最小正周期為,所以,則平移后的圖像的解析式為,此時函數(shù)是奇函數(shù),所以,則,因為,當(dāng)時,,所以,令,則,即對稱點為;令,則對稱軸為,當(dāng)時,,故選:D【點睛】本題考查圖象變換后的解析式,考查正弦型三角函數(shù)的對稱性10、C【解析】由題意可知該雙曲線是等軸雙曲線,故漸近線方程是,而拋物線的準(zhǔn)線方程為,由題設(shè)可得,則,所以(為坐標(biāo)原點)的面積為,應(yīng)選答案C。11、C【解析】

根據(jù)橢圓的焦半徑的最值來判斷命題①,根據(jù)橢圓的離心率大小與橢圓的扁平程度來判斷命題②,根據(jù)題中“速度的變化服從面積守恒規(guī)律”來判斷命題③?!驹斀狻繉τ诿}①,由橢圓的幾何性質(zhì)得知,橢圓上一點到焦點距離的最小值為a-c,最大值為a+c,所以,衛(wèi)星向徑的最小值為a-c,最大值為a+c,結(jié)論①正確;對于命題②,由橢圓的幾何性質(zhì)知,當(dāng)橢圓的離心率e=ca越大,橢圓越扁,衛(wèi)星向徑的最小值與最大值的比值a-ca+c對于命題③,由于速度的變化服從面積守恒規(guī)律,即衛(wèi)星的向徑在相同的時間內(nèi)掃過的面積相等,當(dāng)衛(wèi)星越靠近遠(yuǎn)地點時,向徑越大,當(dāng)衛(wèi)星越靠近近地點時,向徑越小,由于在相同時間掃過的面積相等,則向徑越大,速度越小,所以,衛(wèi)星運行速度在近地點時最大,在遠(yuǎn)地點時最小,結(jié)論③錯誤。故選:C?!军c睛】本題考查橢圓的幾何性質(zhì),考查橢圓幾何量對橢圓形狀的影響,在判斷時要充分理解這些幾何量對橢圓形狀之間的關(guān)系,考查分析問題的能力,屬于中等題。12、D【解析】

由于和是終邊相同的角,故點M的極坐標(biāo)也可表示為.【詳解】點M的極坐標(biāo)為,由于和是終邊相同的角,故點M的坐標(biāo)也可表示為,故選D.【點睛】本題考查點的極坐標(biāo)、終邊相同的角的表示方法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

討論的值,去掉絕對值,作出函數(shù)圖像,由圖象可得原不等式或,分別求出它們,再求并集即可.【詳解】根據(jù)題意,當(dāng)時,,當(dāng)時,由函數(shù)的圖象可得在上遞增,不等式即為或,化簡得或,解得或,即,故解集為。【點睛】本題主要考查了函數(shù)的單調(diào)性以及一元二次不等式的解法,利用圖像來分析不等式的解是解題的關(guān)鍵,屬于中檔題.14、1.【解析】

求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義結(jié)合直線垂直的直線斜率的關(guān)系建立方程關(guān)系進(jìn)行求解即可.【詳解】函數(shù)的圖象在處的切線與直線垂直,函數(shù)的圖象在的切線斜率本題正確結(jié)果:【點睛】本題主要考查直線垂直的應(yīng)用以及導(dǎo)數(shù)的幾何意義,根據(jù)條件建立方程關(guān)系是解決本題的關(guān)鍵.15、3【解析】

設(shè)圓柱的高為h,半徑為r,得πr2h=27π,即,要使用料最省即求全面積的最小值,將S全面積表示為r的函數(shù),令S=f(r),結(jié)合導(dǎo)數(shù)可判斷函數(shù)f(r)的單調(diào)性,進(jìn)而可求函數(shù)取得最小值時的半徑【詳解】用料最省,即水桶的表面積最小.設(shè)圓柱形水桶的表面積為S,底面半徑為r(r>0),則πr2h=27π,即水桶的高為,所以(r>0).求導(dǎo)數(shù),得.令S′=0,解得r=3.當(dāng)0<r<3時,S′<0;當(dāng)r>3時,S′>0.所以當(dāng)r=3時,圓柱形水桶的表面積最小,即用料最省.故答案為3【點睛】本題主要考查導(dǎo)數(shù)的實際應(yīng)用,圓柱的體積公式及表面積的最值的求解,解答應(yīng)用試題的關(guān)鍵是要把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,根據(jù)已學(xué)知識進(jìn)行解決.16、【解析】

由已知棱柱體積與棱錐體積可得S到下底面距離與棱柱高的關(guān)系,進(jìn)一步得到S到上底面距離與棱錐高的關(guān)系,則答案可求.【詳解】設(shè)三棱柱的底面積為,高為,則,再設(shè)到底面的距離為,則,得,所以,則到上底面的距離為,所以三棱錐的體積為.故答案為1.【點睛】本題考查棱柱、棱錐體積的求法,考查空間想象能力、思維能力與計算能力,考查數(shù)形結(jié)合思想,三棱錐體積為,本題是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)能(2)①②見解析【解析】分析:(1)由統(tǒng)計數(shù)據(jù)填寫列聯(lián)表,計算觀測值,對照臨界值得出結(jié)論;

(2)①求抽到1人是45歲以下的概率,再求抽到1人是45歲以上的概率,

②根據(jù)題意知的可能取值,計算對應(yīng)的概率值,寫出隨機變量的分布列,計算數(shù)學(xué)期望值.詳解:(1)由頻率分布直方圖知45歲以下與45歲以上各50人,故填充列聯(lián)表如下:45歲以下45歲以上總計支持354580不支持15520總計5050100因為的觀測值,所以在犯錯誤的概率不超過0.05的前提下認(rèn)為以45歲為分界點的不同人群對“延遲退休年齡政策”的支持度有差異.(2)①抽到1人是45歲以下的概率為,抽到1人是45歲以下且另一人是45歲以上的概率為,故所求概率.②從不支持“延遲退休”的人中抽取8人,則45歲以下的應(yīng)抽6人,45歲以上的應(yīng)抽2人.所以的可能取值為0,1,2.,,.故隨機變量的分布列為:012所以.點睛:本題考查了離散型隨機變量的分布列與數(shù)學(xué)期望的計算問題,也考查了古典概型的概率計算問題,是中檔題.18、(1)他的最佳方案是“任選1個選項作為答案”或者“任選2個選項作為答案”,理由見解析;(2).【解析】

(1)分情況討論:當(dāng)任選1個選項的得分為X分,可得X可取0,2,利用組合運算算出概率,并計算出期望;當(dāng)任選2個選項的得分為Y分,可得Y可取0,4,利用組合運算算出概率,并計算出期望;當(dāng)任選3個選項的得分為Z分,則Z可取0,1,5,利用組合運算算出概率,并計算出期望;比較數(shù)值大小即可.(2)由題意可得這10名考生中有3人得分為0分,6人得分為1分,1人得分為5分,可得,由,、可得3人得分總分小于3.3,即可求解.【詳解】(1)設(shè)任選1個選項的得分為X分,則X可取0,2,,,設(shè)任選2個選項的得分為Y分,則Y可取0,4,設(shè)任選3個選項的得分為Z分,則Z可取0,1,5,,,所以他的最佳方案是“任選1個選項作為答案”或者“任選2個選項作為答案”(2)由于這10名同學(xué)答案互不相同,且可能的答案總數(shù)為10,則這10名考生中有3人得分為0分,6人得分為1分,1人得分為5分,則有,則3人得分總分小于3.3,則【點睛】本題考查了古典概型的概率計算公式、組合數(shù)的計算以及數(shù)學(xué)期望,考查了分類討論的思想,屬于中檔題.19、(1)答案不唯一,具體見解析(2)(3)【解析】

(1)求出導(dǎo)函數(shù),通過當(dāng)時,當(dāng)時,判斷函數(shù)的單調(diào)性即可.

(2)由(1)及知所以,令,利用導(dǎo)數(shù)求出極值點,轉(zhuǎn)化求解.

(3)記,則,說明,由(2),,所以利用放縮法,轉(zhuǎn)化求解即可..【詳解】解:(1)當(dāng)時,函數(shù)在上單調(diào)遞減當(dāng)時,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增(2)由(1)及知所以令,則,所以,且等號當(dāng)且僅當(dāng)時成立若當(dāng)時,恒成立,則(3)記則又,故在的右側(cè)遞增,,由(2),,所以當(dāng)時,綜上的取值范圍是【點睛】本題主要考查導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,基本思路:當(dāng)函數(shù)是增函數(shù)時,導(dǎo)數(shù)大于等于零恒成立,當(dāng)函數(shù)是減函數(shù)時,導(dǎo)數(shù)小于等于零恒成立,然后轉(zhuǎn)化為求相應(yīng)函數(shù)的最值問題.注意放縮法的應(yīng)用.20、(1)男生40名,女生40名;(2)列聯(lián)表見解析,【解析】

(1)由圖(1)可知,身高在的男生的頻率為,設(shè)抽取的學(xué)生中,男生有名,由算出即可(2)由(1)及頻率分布直方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論