貴州省劍河縣2022-2023學(xué)年中考數(shù)學(xué)五模試卷含解析_第1頁
貴州省劍河縣2022-2023學(xué)年中考數(shù)學(xué)五模試卷含解析_第2頁
貴州省劍河縣2022-2023學(xué)年中考數(shù)學(xué)五模試卷含解析_第3頁
貴州省劍河縣2022-2023學(xué)年中考數(shù)學(xué)五模試卷含解析_第4頁
貴州省劍河縣2022-2023學(xué)年中考數(shù)學(xué)五模試卷含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列計算正確的是(

).A.(x+y)2=x2+y2 B.(-xy2)3=-x3y6C.x6÷x3=x2 D.=22.如圖,點A、B、C、D在⊙O上,∠AOC=120°,點B是弧AC的中點,則∠D的度數(shù)是()A.60° B.35° C.30.5° D.30°3.計算的結(jié)果等于()A.-5 B.5 C. D.4.如圖,在平面直角坐標系中,正方形ABCD的頂點A的坐標為(﹣1,1),點B在x軸正半軸上,點D在第三象限的雙曲線上,過點C作CE∥x軸交雙曲線于點E,連接BE,則△BCE的面積為()A.5 B.6 C.7 D.85.如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點E在正方形ABCD內(nèi),在對角線AC上有一點P,使PD+PE的和最小,則這個最小值為()A.2 B.2 C.3 D.6.如圖,四邊形ABCD是正方形,點P,Q分別在邊AB,BC的延長線上且BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結(jié)論:①AQ⊥DP;②△OAE∽△OPA;③當(dāng)正方形的邊長為3,BP=1時,cos∠DFO=,其中正確結(jié)論的個數(shù)是()A.0 B.1 C.2 D.37.如圖所示的幾何體的主視圖正確的是()A. B. C. D.8.有三張正面分別標有數(shù)字-2,3,4的不透明卡片,它們除數(shù)字不同外,其余全部相同,現(xiàn)將它們背面朝上洗勻后,從中任取一張(不放回),再從剩余的卡片中任取一張,則兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是()A. B. C. D.9.已知x2+mx+25是完全平方式,則m的值為()A.10 B.±10 C.20 D.±2010.如圖,點A、B、C在⊙O上,∠OAB=25°,則∠ACB的度數(shù)是()A.135° B.115° C.65° D.50°二、填空題(本大題共6個小題,每小題3分,共18分)11.已知函數(shù)y=|x2﹣x﹣2|,直線y=kx+4恰好與y=|x2﹣x﹣2|的圖象只有三個交點,則k的值為_____.12.已知ba=213.如圖,四邊形ABCD中,點P是對角線BD的中點,點E,F(xiàn)分別是AB,CD的中點,AD=BC,∠PEF=35°,則∠PFE的度數(shù)是_____.14.用一個半徑為10cm半圓紙片圍成一個圓錐的側(cè)面(接縫忽略不計),則該圓錐的高為.15.如圖,直線與雙曲線(k≠0)相交于A(﹣1,)、B兩點,在y軸上找一點P,當(dāng)PA+PB的值最小時,點P的坐標為_________.16.如圖1,在平面直角坐標系中,將?ABCD放置在第一象限,且AB∥x軸,直線y=﹣x從原點出發(fā)沿x軸正方向平移,在平移過程中直線被平行四邊形截得的線段長度l與直線在x軸上平移的距離m的函數(shù)圖象如圖2,那么ABCD面積為_____.三、解答題(共8題,共72分)17.(8分)如圖1,AB為半圓O的直徑,D為BA的延長線上一點,DC為半圓O的切線,切點為C.(1)求證:∠ACD=∠B;(2)如圖2,∠BDC的平分線分別交AC,BC于點E,F(xiàn),求∠CEF的度數(shù).18.(8分)某網(wǎng)店銷售某款童裝,每件售價60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價銷售.市場調(diào)查反映:每降價1元,每星期可多賣30件.已知該款童裝每件成本價40元,設(shè)該款童裝每件售價x元,每星期的銷售量為y件.(1)求y與x之間的函數(shù)關(guān)系式;(2)當(dāng)每件售價定為多少元時,每星期的銷售利潤最大,最大利潤是多少元?(3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝多少件?19.(8分)如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作發(fā)現(xiàn)如圖1,固定△ABC,使△DEC繞點C旋轉(zhuǎn).當(dāng)點D恰好落在BC邊上時,填空:線段DE與AC的位置關(guān)系是;②設(shè)△BDC的面積為S1,△AEC的面積為S1.則S1與S1的數(shù)量關(guān)系是.猜想論證當(dāng)△DEC繞點C旋轉(zhuǎn)到圖3所示的位置時,小明猜想(1)中S1與S1的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請你證明小明的猜想.拓展探究已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,OE∥AB交BC于點E(如圖4),若在射線BA上存在點F,使S△DCF=S△BDC,請直接寫出相應(yīng)的BF的長20.(8分)黃巖某校搬遷后,需要增加教師和學(xué)生的寢室數(shù)量,寢室有三類,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因?qū)嶋H需要,單人間的數(shù)量在20至30之間(包括20和30),且四人間的數(shù)量是雙人間的5倍.(1)若2018年學(xué)校寢室數(shù)為64個,以后逐年增加,預(yù)計2020年寢室數(shù)達到121個,求2018至2020年寢室數(shù)量的年平均增長率;(2)若三類不同的寢室的總數(shù)為121個,則最多可供多少師生住宿?21.(8分)如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.(1)求證:ED為⊙O的切線;(2)若⊙O的半徑為3,ED=4,EO的延長線交⊙O于F,連DF、AF,求△ADF的面積.22.(10分)如圖所示,點P位于等邊△ABC的內(nèi)部,且∠ACP=∠CBP.(1)∠BPC的度數(shù)為________°;(2)延長BP至點D,使得PD=PC,連接AD,CD.①依題意,補全圖形;②證明:AD+CD=BD;(3)在(2)的條件下,若BD的長為2,求四邊形ABCD的面積.23.(12分)在平面直角坐標系xOy中,已知兩點A(0,3),B(1,0),現(xiàn)將線段AB繞點B按順時針方向旋轉(zhuǎn)90°得到線段BC,拋物線y=ax2+bx+c經(jīng)過點C.(1)如圖1,若拋物線經(jīng)過點A和D(﹣2,0).①求點C的坐標及該拋物線解析式;②在拋物線上是否存在點P,使得∠POB=∠BAO,若存在,請求出所有滿足條件的點P的坐標,若不存在,請說明理由;(2)如圖2,若該拋物線y=ax2+bx+c(a<0)經(jīng)過點E(2,1),點Q在拋物線上,且滿足∠QOB=∠BAO,若符合條件的Q點恰好有2個,請直接寫出a的取值范圍.24.如圖,矩形中,點是線段上一動點,為的中點,的延長線交BC于.(1)求證:;(2)若,,從點出發(fā),以l的速度向運動(不與重合).設(shè)點運動時間為,請用表示的長;并求為何值時,四邊形是菱形.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】分析:根據(jù)完全平方公式、積的乘方法則、同底數(shù)冪的除法法則和算術(shù)平方根的定義計算,判斷即可.詳解:(x+y)2=x2+2xy+y2,A錯誤;(-xy2)3=-x3y6,B錯誤;x6÷x3=x3,C錯誤;==2,D正確;故選D.點睛:本題考查的是完全平方公式、積的乘方、同底數(shù)冪的除法以及算術(shù)平方根的計算,掌握完全平方公式、積的乘方法則、同底數(shù)冪的除法法則和算術(shù)平方根的定義是解題的關(guān)鍵.2、D【解析】

根據(jù)圓心角、弧、弦的關(guān)系定理得到∠AOB=∠AOC,再根據(jù)圓周角定理即可解答.【詳解】連接OB,∵點B是弧的中點,∴∠AOB=∠AOC=60°,由圓周角定理得,∠D=∠AOB=30°,故選D.【點睛】此題考查了圓心角、弧、弦的關(guān)系定理,解題關(guān)鍵在于利用好圓周角定理.3、A【解析】

根據(jù)有理數(shù)的除法法則計算可得.【詳解】解:15÷(-3)=-(15÷3)=-5,

故選:A.【點睛】本題主要考查有理數(shù)的除法,解題的關(guān)鍵是掌握有理數(shù)的除法法則:兩數(shù)相除,同號得正,異號得負,并把絕對值相除.4、C【解析】

作輔助線,構(gòu)建全等三角形:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,證明△AGD≌△DHC≌△CMB,根據(jù)點D的坐標表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐標,根據(jù)三角形面積公式可得結(jié)論.【詳解】解:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,設(shè)D(x,),∵四邊形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=﹣x﹣1,∴DG=BM,∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,解得x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,∵AG=DH=﹣1﹣x=1,∴點E的縱坐標為﹣4,當(dāng)y=﹣4時,x=﹣,∴E(﹣,﹣4),∴EH=2﹣=,∴CE=CH﹣HE=4﹣=,∴S△CEB=CE?BM=××4=7;故選C.【點睛】考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)、反比例函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會構(gòu)建方程解決問題.5、A【解析】連接BD,交AC于O,∵正方形ABCD,∴OD=OB,AC⊥BD,∴D和B關(guān)于AC對稱,則BE交于AC的點是P點,此時PD+PE最小,∵在AC上取任何一點(如Q點),QD+QE都大于PD+PE(BE),∴此時PD+PE最小,此時PD+PE=BE,∵正方形的面積是12,等邊三角形ABE,∴BE=AB=,即最小值是2,故選A.【點睛】本題考查了正方形的性質(zhì),等邊三角形的性質(zhì),軸對稱-最短路線問題等知識點的應(yīng)用,關(guān)鍵是找出PD+PE最小時P點的位置.6、C【解析】

由四邊形ABCD是正方形,得到AD=BC,根據(jù)全等三角形的性質(zhì)得到∠P=∠Q,根據(jù)余角的性質(zhì)得到AQ⊥DP;故①正確;根據(jù)勾股定理求出直接用余弦可求出.【詳解】詳解:∵四邊形ABCD是正方形,∴AD=BC,∵BP=CQ,∴AP=BQ,在△DAP與△ABQ中,∴△DAP≌△ABQ,∴∠P=∠Q,∵∴∴∴AQ⊥DP;故①正確;②無法證明,故錯誤.∵BP=1,AB=3,∴∴故③正確,故選C.【點睛】考查正方形的性質(zhì),三角形全等的判定與性質(zhì),勾股定理,銳角三角函數(shù)等,綜合性比較強,對學(xué)生要求較高.7、D【解析】

主視圖是從前向后看,即可得圖像.【詳解】主視圖是一個矩形和一個三角形構(gòu)成.故選D.8、C【解析】畫樹狀圖得:

∵共有6種等可能的結(jié)果,兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的有2種情況,

∴兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是:.故選C.【點睛】運用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.9、B【解析】

根據(jù)完全平方式的特點求解:a2±2ab+b2.【詳解】∵x2+mx+25是完全平方式,∴m=±10,故選B.【點睛】本題考查了完全平方公式:a2±2ab+b2,其特點是首平方,尾平方,首尾積的兩倍在中央,這里首末兩項是x和1的平方,那么中間項為加上或減去x和1的乘積的2倍.10、B【解析】

由OA=OB得∠OAB=∠OBA=25°,根據(jù)三角形內(nèi)角和定理計算出∠AOB=130°,則根據(jù)圓周角定理得∠P=

∠AOB,然后根據(jù)圓內(nèi)接四邊形的性質(zhì)求解.【詳解】解:在圓上取點

P

,連接

PA

、

PB.∵OA=OB

,∴∠OAB=∠OBA=25°

,∴∠AOB=180°?2×25°=130°

,∴∠P=∠AOB=65°,∴∠ACB=180°?∠P=115°.故選B.【點睛】本題考查的是圓,熟練掌握圓周角定理是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1﹣1或﹣1【解析】

直線y=kx+4與拋物線y=-x1+x+1(-1≤x≤1)相切時,直線y=kx+4與y=|x1-x-1|的圖象恰好有三個公共點,即-x1+x+1=kx+4有相等的實數(shù)解,利用根的判別式的意義可求出此時k的值,另外當(dāng)y=kx+4過(1,0)時,也滿足條件.【詳解】解:當(dāng)y=0時,x1-x-1=0,解得x1=-1,x1=1,

則拋物線y=x1-x-1與x軸的交點為(-1,0),(1,0),

把拋物線y=x1-x-1圖象x軸下方的部分沿x軸翻折到x軸上方,

則翻折部分的拋物線解析式為y=-x1+x+1(-1≤x≤1),

當(dāng)直線y=kx+4與拋物線y=-x1+x+1(-1≤x≤1)相切時,

直線y=kx+4與函數(shù)y=|x1-x-1|的圖象恰好有三個公共點,

即-x1+x+1=kx+4有相等的實數(shù)解,整理得x1+(k-1)x+1=0,△=(k-1)1-8=0,

解得k=1±1,

所以k的值為1+1或1-1.

當(dāng)k=1+1時,經(jīng)檢驗,切點橫坐標為x=-<-1不符合題意,舍去.

當(dāng)y=kx+4過(1,0)時,k=-1,也滿足條件,故答案為1-1或-1.【點睛】本題考查了二次函數(shù)與幾何變換:翻折變化不改變圖形的大小,故|a|不變,利用頂點式即可求得翻折后的二次函數(shù)解析式;也可利用絕對值的意義,直接寫出自變量在-1≤x≤1上時的解析式。12、3【解析】

依據(jù)ba=23可設(shè)a=3k,b=2【詳解】∵ba∴可設(shè)a=3k,b=2k,∴aa-b故答案為3.【點睛】本題主要考查了比例的性質(zhì)及見比設(shè)參的數(shù)學(xué)思想,組成比例的四個數(shù),叫做比例的項.兩端的兩項叫做比例的外項,中間的兩項叫做比例的內(nèi)項.13、35°【解析】∵四邊形ABCD中,點P是對角線BD的中點,點E,F(xiàn)分別是AB,CD的中點,∴PE是△ABD的中位線,PF是△BDC的中位線,∴PE=AD,PF=BC,又∵AD=BC,∴PE=PF,∴∠PFE=∠PEF=35°.故答案為35°.14、53【解析】試題分析:根據(jù)圖形可知圓錐的側(cè)面展開圖的弧長為2π×10÷2=10π(cm),因此圓錐的底面半徑為10π÷2π=5(cm),因此圓錐的高為:102-5考點:圓錐的計算15、(0,).【解析】試題分析:把點A坐標代入y=x+4得a=3,即A(﹣1,3),把點A坐標代入雙曲線的解析式得3=﹣k,即k=﹣3,聯(lián)立兩函數(shù)解析式得:,解得:,,即點B坐標為:(﹣3,1),作出點A關(guān)于y軸的對稱點C,連接BC,與y軸的交點即為點P,使得PA+PB的值最小,則點C坐標為:(1,3),設(shè)直線BC的解析式為:y=ax+b,把B、C的坐標代入得:,解得:,所以函數(shù)解析式為:y=x+,則與y軸的交點為:(0,).考點:反比例函數(shù)與一次函數(shù)的交點問題;軸對稱-最短路線問題.16、1【解析】

根據(jù)圖象可以得到當(dāng)移動的距離是4時,直線經(jīng)過點A,當(dāng)移動距離是7時,直線經(jīng)過D,在移動距離是1時經(jīng)過B,則AB=1-4=4,當(dāng)直線經(jīng)過D點,設(shè)其交AB與E,則DE=2,作DF⊥AB于點F.利用三角函數(shù)即可求得DF即平行四邊形的高,然后利用平行四邊形的面積公式即可求解【詳解】解:由圖象可知,當(dāng)移動距離為4時,直線經(jīng)過點A,當(dāng)移動距離為7時,直線經(jīng)過點D,移動距離為1時,直線經(jīng)過點B,則AB=1﹣4=4,當(dāng)直線經(jīng)過點D,設(shè)其交AB于點E,則DE=2,作DF⊥AB于點F,∵y=﹣x于x軸負方向成45°角,且AB∥x軸,∴∠DEF=45°,∴DF=EF,∴在直角三角形DFE中,DF2+EF2=DE2,∴2DF2=1∴DF=2,那么ABCD面積為:AB?DF=4×2=1,故答案為1.【點睛】此題主要考查平行四邊形的性質(zhì)和一次函數(shù)圖象與幾何變換,解題關(guān)鍵在于利用好輔助線三、解答題(共8題,共72分)17、(1)詳見解析;(2)∠CEF=45°.【解析】試題分析:(1)連接OC,根據(jù)切線的性質(zhì)和直徑所對的圓周角是直角得出∠DCO=∠ACB=90°,然后根據(jù)等角的余角相等即可得出結(jié)論;(2)根據(jù)三角形的外角的性質(zhì)證明∠CEF=∠CFE即可求解.試題解析:(1)證明:如圖1中,連接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切線,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直徑,∴∠1+∠B=90°,∴∠3=∠B.(2)解:∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°.18、(1)y=﹣30x+1;(2)每件售價定為55元時,每星期的銷售利潤最大,最大利潤2元;(3)該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝360件.【解析】

(1)每星期的銷售量等于原來的銷售量加上因降價而多銷售的銷售量,代入即可求解函數(shù)關(guān)系式;(2)根據(jù)利潤=銷售量(銷售單價-成本),建立二次函數(shù),用配方法求得最大值.(3)根據(jù)題意可列不等式,再取等將其轉(zhuǎn)化為一元二次方程并求解,根據(jù)每星期的銷售利潤所在拋物線開口向下求出滿足條件的x的取值范圍,再根據(jù)(1)中一元一次方程求得滿足條件的x的取值范圍內(nèi)y的最小值即可.【詳解】(1)y=300+30(60﹣x)=﹣30x+1.(2)設(shè)每星期利潤為W元,W=(x﹣40)(﹣30x+1)=﹣30(x﹣55)2+2.∴x=55時,W最大值=2.∴每件售價定為55元時,每星期的銷售利潤最大,最大利潤2元.(3)由題意(x﹣40)(﹣30x+1)≥6480,解得52≤x≤58,當(dāng)x=52時,銷售300+30×8=540,當(dāng)x=58時,銷售300+30×2=360,∴該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝360件.【點睛】本題主要考查一次函數(shù)的應(yīng)用和二次函數(shù)的應(yīng)用,注意綜合運用所學(xué)知識解題.19、解:(1)①DE∥AC.②.(1)仍然成立,證明見解析;(3)3或2.【解析】

(1)①由旋轉(zhuǎn)可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等邊三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②過D作DN⊥AC交AC于點N,過E作EM⊥AC交AC延長線于M,過C作CF⊥AB交AB于點F.由①可知:△ADC是等邊三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如圖,過點D作DM⊥BC于M,過點A作AN⊥CE交EC的延長線于N,

∵△DEC是由△ABC繞點C旋轉(zhuǎn)得到,

∴BC=CE,AC=CD,

∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,

∴∠ACN=∠DCM,

∵在△ACN和△DCM中,,

∴△ACN≌△DCM(AAS),

∴AN=DM,

∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),

即S1=S1;(3)如圖,過點D作DF1∥BE,易求四邊形BEDF1是菱形,

所以BE=DF1,且BE、DF1上的高相等,

此時S△DCF1=S△BDE;

過點D作DF1⊥BD,

∵∠ABC=20°,F(xiàn)1D∥BE,

∴∠F1F1D=∠ABC=20°,

∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,

∴∠F1DF1=∠ABC=20°,

∴△DF1F1是等邊三角形,

∴DF1=DF1,過點D作DG⊥BC于G,

∵BD=CD,∠ABC=20°,點D是角平分線上一點,

∴∠DBC=∠DCB=×20°=30°,BG=BC=,

∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,

∠CDF1=320°-150°-20°=150°,

∴∠CDF1=∠CDF1,

∵在△CDF1和△CDF1中,,

∴△CDF1≌△CDF1(SAS),

∴點F1也是所求的點,

∵∠ABC=20°,點D是角平分線上一點,DE∥AB,

∴∠DBC=∠BDE=∠ABD=×20°=30°,

又∵BD=3,

∴BE=×3÷cos30°=3,

∴BF1=3,BF1=BF1+F1F1=3+3=2,

故BF的長為3或2.20、(1)2018至2020年寢室數(shù)量的年平均增長率為37.5%;(2)該校的寢室建成后最多可供1名師生住宿.【解析】

(1)設(shè)2018至2020年寢室數(shù)量的年平均增長率為x,根據(jù)2018及2020年寢室數(shù)量,即可得出關(guān)于x的一元二次方程,解之取其正值即可得出結(jié)論;(2)設(shè)雙人間有y間,則四人間有5y間,單人間有(121-6y)間,可容納人數(shù)為w人,由單人間的數(shù)量在20至30之間(包括20和30),即可得出關(guān)于y的一元一次不等式組,解之即可得出y的取值范圍,再根據(jù)可住師生數(shù)=寢室數(shù)×每間寢室可住人數(shù),可找出w關(guān)于y的函數(shù)關(guān)系式,利用一次函數(shù)的性質(zhì)即可解決最值問題.【詳解】(1)解:設(shè)2018至2020年寢室數(shù)量的年平均增長率為x,根據(jù)題意得:64(1+x)2=121,解得:x1=0.375=37.5%,x2=﹣2.375(不合題意,舍去).答:2018至2020年寢室數(shù)量的年平均增長率為37.5%.(2)解:設(shè)雙人間有y間,可容納人數(shù)為w人,則四人間有5y間,單人間有(121﹣6y)間,∵單人間的數(shù)量在20至30之間(包括20和30),∴,解得:15≤y≤16.根據(jù)題意得:w=2y+20y+121﹣6y=16y+121,∴當(dāng)y=16時,16y+121取得最大值為1.答:該校的寢室建成后最多可供1名師生住宿.【點睛】本題考查了一元二次方程的應(yīng)用、一元一次不等式組的應(yīng)用以及一次函數(shù)的性質(zhì),解題的關(guān)鍵是:(1)找準等量關(guān)系,正確列出一元二次方程;(2)根據(jù)數(shù)量之間的關(guān)系,找出w關(guān)于y的函數(shù)關(guān)系式.21、(1)見解析;(2)△ADF的面積是.【解析】試題分析:(1)連接OD,CD,求出∠BDC=90°,根據(jù)OE∥AB和OA=OC求出BE=CE,推出DE=CE,根據(jù)SSS證△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;

(2)過O作OM⊥AB于M,過F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根據(jù)sin∠BAC=,求出OM,根據(jù)cos∠BAC=,求出AM,根據(jù)垂徑定理求出AD,代入三角形的面積公式求出即可.試題解析:(1)證明:連接OD,CD,∵AC是⊙O的直徑,∴∠CDA=90°=∠BDC,∵OE∥AB,CO=AO,∴BE=CE,∴DE=CE,∵在△ECO和△EDO中,∴△ECO≌△EDO,∴∠EDO=∠ACB=90°,即OD⊥DE,OD過圓心O,∴ED為⊙O的切線.(2)過O作OM⊥AB于M,過F作FN⊥AB于N,則OM∥FN,∠OMN=90°,∵OE∥AB,∴四邊形OMFN是矩形,∴FN=OM,∵DE=4,OC=3,由勾股定理得:OE=5,∴AC=2OC=6,∵OE∥AB,∴△OEC∽△ABC,∴,∴,∴AB=10,在Rt△BCA中,由勾股定理得:BC==8,sin∠BAC=,即,OM==FN,∵cos∠BAC=,∴AM=由垂徑定理得:AD=2AM=,即△ADF的面積是AD×FN=××=.答:△ADF的面積是.【點睛】考查了切線的性質(zhì)和判定,勾股定理,三角形的面積,垂徑定理,直角三角形的斜邊上中線性質(zhì),全等三角形的性質(zhì)和判定等知識點的運用,通過做此題培養(yǎng)了學(xué)生的分析問題和解決問題的能力.22、(1)120°;(2)①作圖見解析;②證明見解析;(3)3.【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì),可知∠ACB=60°,在△BCP中,利用三角形內(nèi)角和定理即可得;(2)①根據(jù)題意補全圖形即可;②證明△ACD≌△BCP,根據(jù)全等三角形的對應(yīng)邊相等可得AD(3)如圖2,作BM⊥AD于點M,BN⊥DC延長線于點N,根據(jù)已知可推導(dǎo)得出BM=【詳解】(1)∵三角形ABC是等邊三角形,∴∠ACB=60°,即∠ACP+∠BCP=60°,∵∠BCP+∠CBP+∠BPC=180°,∠ACP=∠CBP,∴∠BPC=120°,故答案為120;(2)①∵如圖1所示.②在等邊△ABC中,∠ACB∴∠ACP+∵∠ACP=∴∠CBP+∴∠BPC=180°-∴∠CPD=180°-∵PD=∴△CDP∵∠ACD+∴∠ACD在△ACD和△AC=BC??∴△ACD∴AD=∴AD+(3)如圖2,作BM⊥AD于點M,BN⊥∵∠ADB=∴∠ADB=∴∠ADB=∴BM=又由(2)得,AD+∴S四邊形ABCD==32×2【點睛】本題考查了等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)等,熟練掌握相關(guān)性質(zhì)定理、正確添加輔助線是解題的關(guān)鍵.23、(1)①y=﹣x2+x+3;②P(,)或P'(,﹣);(2)≤a<1;【解析】

(1)①先判斷出△AOB≌△GBC,得出點C坐標,進而用待定系數(shù)法即可得出結(jié)論;②分兩種情況,利用平行線(對稱)和直線和拋物線的交點坐標的求法,即可得出結(jié)論;(2)同(1)②的方法,借助圖象即可得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論