版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023高二下數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,則輸出的值是()A.3 B.5 C.7 D.92.要將甲、乙、丙、丁名同學分到三個班級中,要求每個班級至少分到一人,則甲被分到班的概率為()A. B. C. D.3.函數(shù)在點處的切線方程為()A. B.C. D.4.命題“,使”的否定是()A.,使 B.,使C.,使 D.,使5.若x∈0,2π,則不等式x+A.0,π B.π4,5π46.正方體中,若外接圓半徑為,則該正方體外接球的表面積為()A. B. C. D.7.已知集合,,則()A. B. C. D.8.根據(jù)歷年氣象統(tǒng)計資料,某地四月份吹東風的概率為,下雨的概率為,既吹東風又下雨的概率為.則在下雨條件下吹東風的概率為()A. B. C. D.9.已知,則()A.11 B.12 C.13 D.1410.已知函數(shù),函數(shù)有四個不同的零點,從小到大依次為,,,,則的取值范圍為()A. B. C. D.11.如圖,是正四面體的面上一點,點到平面距離與到點的距離相等,則動點的軌跡是()A.直線 B.拋物線C.離心率為的橢圓 D.離心率為3的雙曲線12.已知的分布列為-101設(shè),則的值為()A.4 B. C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知,區(qū)域滿足:,設(shè),若對區(qū)域內(nèi)的任意兩點,都有成立,則的取值范圍是______.14.已知,命題:,,命題:,,若命題為真命題,則實數(shù)的取值范圍是_____.15.已知二項式的展開式中各項的二項式系數(shù)之和是16,則展開式中的含項的系數(shù)是_________.16.雙曲線上一點到點的距離為9,則點到點的距離______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,直三棱柱中,,,,為的中點,點為線段上的一點.(1)若,求證:;(2)若,異面直線與所成的角為,求直線與平面所成角的正弦值.18.(12分)在中,,,的對邊分別為,,,若,(1)求的大?。唬?)若,,求,的值.19.(12分)已知函數(shù).(1)當,求函數(shù)的圖象在點處的切線方程;(2)當時,求函數(shù)的單調(diào)區(qū)間.20.(12分)在2018年高校自主招生期間,某校把學生的平時成績按“百分制”折算,選出前名學生,并對這名學生按成績分組,第一組,第二組,第三組,第四組,第五組.如圖為頻率分布直方圖的一部分,其中第五組、第一組、第四組、第二組、第三組的人數(shù)依次成等差數(shù)列,且第四組的人數(shù)為60.(1)請寫出第一、二、三、五組的人數(shù),并在圖中補全頻率分布直方圖;(2)若大學決定在成績高的第3,4,5組中用分層抽樣的方法抽取6名學生進行面試.①若大學本次面試中有,,三位考官,規(guī)定獲得至少兩位考官的認可即為面試成功,且各考官面試結(jié)果相互獨立.已知甲同學已經(jīng)被抽中,并且通過這三位考官面試的概率依次為,,,求甲同學面試成功的概率;②若大學決定在這6名學生中隨機抽取3名學生接受考官的面試,第3組有名學生被考官面試,求的分布列和數(shù)學期望.21.(12分)新高考3+3最大的特點就是取消文理科,除語文、數(shù)學、外語之外,從物理、化學、生物、政治、歷史、地理這6科中自由選擇三門科目作為選考科目.某研究機構(gòu)為了了解學生對全理(選擇物理、化學、生物)的選擇是否與性別有關(guān),覺得從某學校高一年級的650名學生中隨機抽取男生,女生各25人進行模擬選科.經(jīng)統(tǒng)計,選擇全理的人數(shù)比不選全理的人數(shù)多10人.(1)請完成下面的2×2列聯(lián)表;選擇全理不選擇全理合計男生5女生合計(2)估計有多大把握認為選擇全理與性別有關(guān),并說明理由;(3)現(xiàn)從這50名學生中已經(jīng)選取了男生3名,女生2名進行座談,從中抽取2名代表作問卷調(diào)查,求至少抽到一名女生的概率.0.150.100.050.0250.0100.0050.0012.0722.0763.8415.0246.6357.87910.828附:,其中.22.(10分)從甲地到乙地要經(jīng)過個十字路口,設(shè)各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為,,.()設(shè)表示一輛車從甲地到乙地遇到紅燈的個數(shù),求隨機變量的分布列和均值.()若有輛車獨立地從甲地到乙地,求這輛車共遇到個紅燈的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由已知的框圖可知,該程序的功能是利用循環(huán)結(jié)構(gòu)計算輸出變量n的值,模擬程序運行的過程,分析循環(huán)中各變量的變化情況,可得答案,本題中在計算S時,還需要結(jié)合數(shù)列中的裂項求和法解決問題,即:.【詳解】解:由程序框圖知:第一次循環(huán):初始值為0,不滿足,故,;第二次循環(huán):當,不滿足,故,;第三次循環(huán):當,不滿足,故,;第四次循環(huán):當,不滿足,故,;此時,,滿足,退出循環(huán),輸出,故選D.【點睛】本題考查了程序框圖的應(yīng)用問題,解題時模擬程序框圖的運行過程,便可得出正確的結(jié)論,這類題型往往會和其他知識綜合,解題需結(jié)合其他知識加以解決.2、B【解析】
根據(jù)題意,先將四人分成三組,再分別分給三個班級即可求得總安排方法;若甲被安排到A班,則分甲單獨一人安排到A班和甲與另外一人一起安排到A班兩種情況討論,即可確定甲被安排到A班的所有情況,即可求解.【詳解】將甲、乙、丙、丁名同學分到三個班級中,要求每個班級至少分到一人,則將甲、乙、丙、丁名同學分成三組,人數(shù)分別為1,1,2;則共有種方法,分配給三個班級的所有方法有種;甲被分到A班,有兩種情況:一,甲單獨一人分到A班,則剩余兩個班級分別為1人和2人,共有種;二,甲和另外一人分到A班,則剩余兩個班級各1人,共有種;綜上可知,甲被分到班的概率為,故選:B.【點睛】本題考查了排列組合問題的綜合應(yīng)用,分組時注意重復(fù)情況的出現(xiàn),屬于中檔題.3、B【解析】
首先求出函數(shù)在點處的導(dǎo)數(shù),也就是切線的斜率,再利用點斜式求出切線方程..【詳解】∵,∴切線斜率,又∵,∴切點為,∴切線方程為,即.故選B.【點睛】本題考查導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.4、A【解析】
根據(jù)含有一個量詞的命題的否定,可直接得出結(jié)果.【詳解】因為特稱命題的否定為全稱命題,所以命題“,使”的否定是“,使”.故選A【點睛】本題主要考查含有一個量詞的命題的否定,只需改量詞與結(jié)論即可,屬于基礎(chǔ)題型.5、D【解析】
由絕對值三角不等式的性質(zhì)得出xsinx<0,由0<x<2π,得出【詳解】因為x+sinx又x∈(0,2π),所以sinx<0,x∈(π,2π),故選:D【點睛】本題考查絕對值三角不等式的應(yīng)用,再利用絕對值不等式時,需要注意等號成立的條件,屬于基礎(chǔ)題。6、C【解析】
設(shè)正方體的棱長為,則是邊長為的正三角形,求得其外接圓的半徑,求得的值,進而求得球的半徑,即可求解球的表面積,得到答案.【詳解】如圖所示,設(shè)正方體的棱長為,則是邊長為的正三角形,設(shè)其外接圓的半徑為,則,即,由,得,所以正方體的外接球的半徑為,所以正方體的外接球的表面積為,故選C.【點睛】本題主要考查了求得表面積與體積的計算問題,同時考查了組合體及球的性質(zhì)的應(yīng)用,其中解答中根據(jù)幾何體的結(jié)構(gòu)特征,利用球的性質(zhì),求得球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及推理與運算能力,屬于基礎(chǔ)題.7、C【解析】
先求解絕對值不等式得到集合A,然后直接利用交集運算可得答案?!驹斀狻拷猓阂驗?,所以,得,所以集合,又因為,所以,故選C.【點睛】本題主要考查了絕對值不等式及交集運算,較基礎(chǔ).8、C【解析】
在下雨條件下吹東風的概率=既吹東風又下雨的概率下雨的概率【詳解】在下雨條件下吹東風的概率為,選C【點睛】本題考查條件概率的計算,屬于簡單題.9、B【解析】∵,∴,整理,得,;解得,或(不合題意,舍去);∴n的值為12.故選:B.10、B【解析】分析:通過f(x)的單調(diào)性,畫出f(x)的圖象和直線y=a,考慮四個交點的情況,得到x1=-2-x2,-1<x2≤0,x3x4=4,再由二次函數(shù)的單調(diào)性,可得所求范圍.詳解:當x>0時,f(x)=,可得f(x)在x>2遞增,在0<x<2處遞減,
由f(x)=e
(x+1)2,x≤0,
x<-1時,f(x)遞減;-1<x<0時,f(x)遞增,
可得x=-1處取得極小值1,
作出f(x)的圖象,以及直線y=a,
可得e
(x1+1)2=e
(x2+1)2=,即有x1+1+x2+1=0,可得x1=-2-x2,-1<x2≤0,可得x3x4=4,
x1x2+x3x4=4-2x2-x22=-(x2+1)2+5,在-1<x2≤0遞減,
可得所求范圍為[4,5).故選B.點睛:本題考查函數(shù)方程的轉(zhuǎn)化思想,以及數(shù)形結(jié)合思想方法,考查二次函數(shù)的最值求法,化簡整理的運算能力,屬于中檔題.11、C【解析】分析:由題設(shè)條件將點P到平面ABC距離與到點V的距離相等轉(zhuǎn)化成在面VBC中點P到V的距離與到定直線BC的距離比是一個常數(shù),依據(jù)圓錐曲線的第二定義判斷出其軌跡的形狀.詳解:∵正四面體V﹣ABC∴面VBC不垂直面ABC,過P作PD⊥面ABC于D,過D作DH⊥BC于H,連接PH,可得BC⊥面DPH,所以BC⊥PH,故∠PHD為二面角V﹣BC﹣A的平面角令其為θ則Rt△PGH中,|PD|:|PH|=sinθ(θ為V﹣BC﹣A的二面角的大?。贮cP到平面ABC距離與到點V的距離相等,即|PV|=|PD|∴|PV|:|PH|=sinθ<1,即在平面VBC中,點P到定點V的距離與定直線BC的距離之比是一個常數(shù)sinθ,又在正四面體V﹣ABC,V﹣BC﹣A的二面角的大小θ有:sinθ=<1,由橢圓定義知P點軌跡為橢圓在面SBC內(nèi)的一部分.故答案為:C.點睛:(1)本題主要考查二面角、橢圓的定義、軌跡方程等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.(2)解答本題的關(guān)鍵是聯(lián)想到圓錐曲線的第二定義.12、B【解析】
由的分布列,求出,再由,求得.【詳解】,因為,所以.【點睛】本題考查隨機變量的期望計算,對于兩個隨機變量,具有線性關(guān)系,直接利用公式能使運算更簡潔.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意可知直線與圓相切,由相切定義可得,令,由可求其范圍.【詳解】由題意可得:直線與圓相切即,化簡得:,令故答案為:【點睛】本題考查了直線與圓的位置關(guān)系,考查了三角換元法,本題的關(guān)鍵在于題干條件的轉(zhuǎn)化,由線性規(guī)劃知識可知位于直線同一側(cè)的點正負性相同,滿足題目要求.屬于難題.14、或【解析】
根據(jù)不等式恒成立化簡命題為,根據(jù)一元二次方程有解化簡命題為或,再根據(jù)且命題的性質(zhì)可得結(jié)果.【詳解】若命題:“,”為真;則,解得:,若命題:“,”為真,則,解得:或,若命題“”是真命題,則,或,故答案為或【點睛】解答非命題、且命題與或命題真假有關(guān)的題型時,應(yīng)注意:(1)原命題與其非命題真假相反;(2)或命題“一真則真”;(3)且命題“一假則假”.15、【解析】
先由二項式系數(shù)之和求出,再根據(jù)二項展開式的通項公式,即可求出結(jié)果.【詳解】因為二項式的展開式中各項的二項式系數(shù)之和是16,所以,即;所以,其二項展開式的通項為:,令得,所以,因此含項的系數(shù)是.故答案為:.【點睛】本題主要考查求指定項的系數(shù),熟記二項式定理即可,屬于常考題型.16、或【解析】
先根據(jù)雙曲線方程求出焦點坐標,再結(jié)合雙曲線的定義可得到,進而可求出的值,得到答案.【詳解】雙曲線,,,,和為雙曲線的兩個焦點,點在雙曲線上,,解或,,或,故答案為:或.【點睛】本題主要考查的是雙曲線的定義,屬于基礎(chǔ)題.求雙曲線上一點到某一焦點的距離時,若已知該點的橫、縱坐標,則根據(jù)兩點間距離公式可求結(jié)果;若已知該點到另一焦點的距離,則根據(jù)求解,注意對所求結(jié)果進行必要的驗證,負數(shù)應(yīng)該舍去,且所求距離應(yīng)該不小于.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】
(1)根據(jù)三棱柱是直三棱柱的特征,又,可作中點,連接DM,通過線面垂直證明平面,可推出,又,可證(2)通過作圖,分別以,,為軸、軸、軸,建立空間直角體系,先通過幾何法求出長度,分別表示出線面角各點對應(yīng)的坐標,再用向量公式算出直線與平面所成角的正弦值【詳解】證明:(1)取中點,連接,,有,因為,所以,又因為三棱柱為直三棱柱,所以平面平面,又因為平面平面,所以平面,又因為平面,所以又因為,,平面,平面,所以平面,又因為平面,所以,因為,所以.(2)設(shè),如圖以為坐標原點,分別以,,為軸、軸、軸,建立空間直角體系,由(1)可知,,所以,故,,,,,對平面,,,所以其法向量可表示為.又,所以直線與平面成角的正弦值.【點睛】證線線垂直一般是通過線面垂直進行證明,本題其實還可以采用射影逆定理進行證明,通過證明與斜線垂直即,推出與射影垂直,,不妨一試;對于像本題中第二問不太好確定線面關(guān)系而又發(fā)覺立體圖形比較規(guī)整的,比如說正方體、長方體、正三棱錐,直棱柱等,都可直接考慮建立空間直角坐標系來進行求解18、(1)(2),或,.【解析】分析:(1)利用正弦定理把化成,即為,從而解得.(2)利用余弦定理及構(gòu)建關(guān)于的方程,解出.詳解:(1)由已知得,∴.∵,∴.∵,所以,∴,所以(2)∵,即,∴∴,又∵,∴,或,點睛:三角形中共有七個幾何量(三邊三角以及外接圓的半徑),一般地,知道其中的三個量(除三個角外),可以求得其余的四個量.(1)如果知道三邊或兩邊及其夾角,用余弦定理;(2)如果知道兩邊即一邊所對的角,用正弦定理(也可以用余弦定理求第三條邊);(3)如果知道兩角及一邊,用正弦定理.19、(1);(2)見解析.【解析】
試題分析:(Ⅰ)由,求出函數(shù)的導(dǎo)數(shù),分別求出,,即可求出切線方程;(Ⅱ)求出函數(shù)的導(dǎo)數(shù),通過討論的范圍,即可求出函數(shù)的單調(diào)區(qū)間試題解析:(Ⅰ)當時,∴∴,;∴函教的圖象在點處的切線方程為.(Ⅱ)由題知,函數(shù)的定義域為,,令,解得,,①當時,所以,在區(qū)間和上;在區(qū)間上,故函數(shù)的單調(diào)遞增區(qū)間是和,單調(diào)遞減區(qū)間是.②當時,恒成立,故函數(shù)的單調(diào)遞增區(qū)間是.③當時,,在區(qū)間,和上;在上,故函數(shù)的單調(diào)遞增區(qū)間是,,單調(diào)遞減區(qū)間是④當時,,時,時,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是⑤當時,,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是,綜上,①時函數(shù)的單調(diào)遞增區(qū)間是和,單調(diào)遞減區(qū)間是②時,函數(shù)的單調(diào)遞增區(qū)間是③當時,函數(shù)的單調(diào)遞增區(qū)間是,,單調(diào)遞減區(qū)間是④當時,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是點睛:確定單調(diào)區(qū)間的步驟:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù),令,解此方程,求出在定義區(qū)間內(nèi)的一切實根;(3)把函數(shù)的間斷點(即的無定義點)的橫坐標和上面的各實數(shù)根按由小到大的順序排列起來,然后用這些點把函數(shù)的定義區(qū)間分成若干個小區(qū)間;(4)確定在各個區(qū)間內(nèi)的符號,根據(jù)符號判定函數(shù)在每個相應(yīng)區(qū)間內(nèi)的單調(diào)性.20、(1)45,75,90,30,圖見解析.(2)①.②分布列見解析;.【解析】分析:(1)第四組的人數(shù)為60,所以總?cè)藬?shù)為300,再利用直方圖性質(zhì)與等差數(shù)列的性質(zhì)即可得出;(2)①設(shè)事件為“甲同學面試成功”,利用相互獨立與互斥事件的概率計算公式即可得出;②由題意可得,,,即可得出分布列與數(shù)學期望.詳解:(1)第一、二、三、五組的人數(shù)分別是45,75,90,30,(2)①設(shè)事件為“甲同學面試成功”.則:.②
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度綠色建筑節(jié)能改造工程承包合同模板2篇
- 2025年度電影院場地租賃合同及觀影安全保障與服務(wù)標準協(xié)議3篇
- 2024版移動網(wǎng)絡(luò)業(yè)務(wù)伙伴合同版B版
- 2025年度婚禮場地借用與策劃服務(wù)合同3篇
- 2025年度訴訟保全擔保流程規(guī)范細則合同3篇
- 2025年水土保持監(jiān)測技術(shù)咨詢與旅游開發(fā)合同3篇
- 二零二五年空調(diào)清洗保養(yǎng)及節(jié)能效益分析合同3篇
- 2025年版健康養(yǎng)老服務(wù)合同4篇
- 2025年度高速公路專用水穩(wěn)材料采購合同3篇
- 2025年消防安全評估與隱患整改服務(wù)合同3篇
- 供應(yīng)室技能考核操作標準
- 公共政策學-陳振明課件
- SHSG0522023年石油化工裝置工藝設(shè)計包(成套技術(shù))內(nèi)容規(guī)定
- 《運營管理》案例庫
- 醫(yī)院安全保衛(wèi)部署方案和管理制度
- 我的自我針灸記錄摘錄
- 中醫(yī)學-五臟-心-課件
- 《駱駝祥子》閱讀記錄卡
- 教育學原理完整版課件全套ppt教程(最新)
- 醫(yī)療安全不良事件報告培訓(xùn)PPT培訓(xùn)課件
- 膽管癌的護理查房
評論
0/150
提交評論