版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2.1ChapterTwoGraphicalandTabularDescriptiveTechniques2.2Introduction&Re-cap…Descriptivestatisticsinvolvesarranging,summarizing,andpresentingasetofdatainsuchawaythatusefulinformationisproduced.Itsmethodsmakeuseofgraphicaltechniquesandnumericaldescriptivemeasures(suchasaverages)tosummarizeandpresentthedata.DataStatisticsInformation2.3Populations&SamplesThegraphical&tabularmethodspresentedhereapplytobothentirepopulationsandsamplesdrawnfrompopulations.PopulationSampleSubset2.4Definitions…Avariableissomecharacteristicofapopulationorsample. E.g.studentgrades. Typicallydenotedwithacapitalletter:X,Y,Z…Thevalues
ofthevariablearetherangeofpossiblevaluesforavariable. E.g.studentmarks(0..100)Dataaretheobservedvaluesofavariable. E.g.studentmarks:{67,74,71,83,93,55,48}2.5TypesofData&InformationData(atleastforpurposesofStatistics)fallintothreemaingroups:IntervalDataNominalDataOrdinalData2.6IntervalData…Interval
data
?Realnumbers,i.e.heights,weights,prices,etc. ?Alsoreferredtoasquantitativeornumerical.ArithmeticoperationscanbeperformedonIntervalData,thusitsmeaningfultotalkabout2*Height,orPrice+$1,andsoon.2.7NominalData…NominalData ?The
valuesofnominaldataarecategories. E.g.responsestoquestionsaboutmaritalstatus,codedas: Single=1,Married=2,Divorced=3,Widowed=4Thesedataarecategoricalinnature;arithmeticoperationsdon’tmakeanysense(e.g.doesWidowed÷2=Married?!)Nominaldataarealsocalledqualitativeorcategorical.2.8OrdinalData…Ordinal
Dataappeartobecategoricalinnature,buttheirvalueshaveanorder;arankingtothem: E.g.Collegecourseratingsystem:poor=1,fair=2,good=3,verygood=4,excellent=5
Whileitsstillnotmeaningfultodoarithmeticonthisdata(e.g.does2*fair=verygood?!),wecansaythingslike:excellent>poororfair<verygoodThatis,orderismaintainednomatterwhatnumericvaluesareassignedtoeachcategory.2.9CalculationsforTypesofDataAsmentionedabove,?
Allcalculationsarepermittedonintervaldata.?
Onlycalculationsinvolvingarankingprocessareallowedforordinaldata.?Nocalculationsareallowedfornominaldata,savecountingthenumberofobservationsineachcategory.Thislendsitselftothefollowing“hierarchyofdata”…2.10HierarchyofData…Interval Valuesarerealnumbers. Allcalculationsarevalid. Datamaybetreatedasordinalornominal.Ordinal Valuesmustrepresenttherankedorderofthedata. Calculationsbasedonanorderingprocessarevalid. Datamaybetreatedasnominalbutnotasinterval.Nominal
Valuesarethearbitrarynumbersthatrepresentcategories. Onlycalculationsbasedonthefrequenciesofoccurrencearevalid. Datamaynotbetreatedasordinalorinterval.2.11Graphical&TabularTechniquesforNominalData…Theonlyallowablecalculationonnominaldataistocountthefrequencyofeachvalueofthevariable.Wecansummarizethedatainatablethatpresentsthecategoriesandtheircountscalledafrequencydistribution.Arelativefrequencydistributionliststhecategoriesandtheproportionwithwhicheachoccurs.2.12Example2.1LightBeerPreferenceSurveyIn2006totallightbeersalesintheUnitedStateswasapproximately3milliongallonsWiththislargeamarketbreweriesoftenneedtoknowmoreaboutwhoisbuyingtheirproduct.Themarketingmanagerofamajorbrewerywantedtoanalyzethelightbeersalesamongcollegeanduniversitystudentswhododrinklightbeer.Arandomsampleof285graduatingstudentswasaskedtoreportwhichofthefollowingistheirfavoritelightbeer.2.13Example2.11.BudweiserLight2.BuschLight3.CoorsLight4.MichelobLight5.MillerLite6.NaturalLight7.OtherbrandTheresponseswererecordedusingthecodes.Constructafrequencyandrelativefrequencydistributionforthesedataandgraphicallysummarizethedatabyproducingabarchartandapiechart.
2.14Example2.1Xm02-01*
2.15FrequencyandRelativeFrequencyDistributions2.16NominalData(Frequency)BarChartsareoftenusedtodisplayfrequencies…2.17NominalData(RelativeFrequency)PieChartsshowrelativefrequencies…2.18NominalDataItallthesameinformation,(basedonthesamedata).Justdifferentpresentation.2.19Example2.2Table2.3liststhetotalenergyconsumptionoftheUnitedStatesfromallsourcesin2005.Tomakeiteasiertoseethedetailsthetablemeasurestheheatcontentinmetrictons(1,000kilograms)ofoilequivalent.Forexample,theUnitedStatesburnedanamountofcoalandcoalproductsequivalentto545,259metrictonsofoil.Useanappropriategraphicaltechniquetodepictthesefigures.2.20Table2.3 Xm02-02*Non-RenewableEnergySourcesHeatContentCoal&coalproducts 545,258 Oil 903,440 NaturalGas 517,881 Nuclear 209,890 RenewableEnergySourcesHydroelectric 18,251 SolidBiomass 52,473 Other(Liquidbiomass,geothermal, 20,533 solar,wind,andtide,wave,&Ocean) Total 2,267,7262.21Example2.2
2.22GraphicalTechniquesforIntervalDataThereareseveralgraphicalmethodsthatareusedwhenthedataareinterval(i.e.numeric,non-categorical).Themostimportantofthesegraphicalmethodsisthehistogram.Thehistogramisnotonlyapowerfulgraphicaltechniqueusedtosummarizeintervaldata,butitisalsousedtohelpexplainprobabilities.2.23Example2.4Followingderegulationoftelephoneservice,severalnewcompanieswerecreatedtocompeteinthebusinessofprovidinglong-distancetelephoneservice.Inalmostallcasesthesecompaniescompetedonpricesincetheserviceeachofferedissimilar.Pricingaserviceorproductinthefaceofstiffcompetitionisverydifficult.Factorstobeconsideredincludesupply,demand,priceelasticity,andtheactionsofcompetitors.Long-distancepackagesmayemployper-minutecharges,aflatmonthlyrate,orsomecombinationofthetwo.Determiningtheappropriateratestructureisfacilitatedbyacquiringinformationaboutthebehaviorsofcustomersandinparticularthesizeofmonthlylong-distancebills.2.24Example2.4Aspartofalargerstudy,along-distancecompanywantedtoacquireinformationaboutthemonthlybillsofnewsubscribersinthefirstmonthaftersigningwiththecompany.Thecompany’smarketingmanagerconductedasurveyof200newresidentialsubscriberswhereinthefirstmonth’sbillswererecorded.ThesedataarestoredinfileXm02-04.Thegeneralmanagerplannedtopresenthisfindingstoseniorexecutives.Whatinformationcanbeextractedfromthesedata?2.25Example2.4InExample2.1wecreatedafrequencydistributionofthe5categories.Inthisexamplewealsocreateafrequencydistributionbycountingthenumberofobservationsthatfallintoaseriesofintervals,calledclasses.I’llexplainlaterwhyIchosetheclassesIusebelow.2.26Example2.4Wehavechoseneightclassesdefinedinsuchawaythateachobservationfallsintooneandonlyoneclass.Theseclassesaredefinedasfollows:
Classes Amountsthatarelessthanorequalto15 Amountsthataremorethan15butlessthanorequalto30 Amountsthataremorethan30butlessthanorequalto45 Amountsthataremorethan45butlessthanorequalto60 Amountsthataremorethan60butlessthanorequalto75 Amountsthataremorethan75butlessthanorequalto90 Amountsthataremorethan90butlessthanorequalto105 Amountsthataremorethan105butlessthanorequalto1202.27Example2.42.28Interpret…abouthalf(71+37=108)ofthebillsare“small”,i.e.lessthan$30Thereareonlyafewtelephonebillsinthemiddlerange.(18+28+14=60)÷200=30%i.e.nearlyathirdofthephonebillsare$90ormore.2.29BuildingaHistogram…CollecttheDataCreateafrequencydistributionforthedata… How? a)Determinethenumberofclassestouse… How? Refertotable2.6:With200observations,weshouldhavebetween7&10classes…Alternative,wecoulduseSturges’formula:Numberofclassintervals=1+3.3log(n)2.30BuildingaHistogram…CollecttheDataCreateafrequencydistributionforthedata… How? a)Determinethenumberofclassestouse.[8] b)Determinehowlargetomakeeachclass… How? Lookattherangeofthedata,thatis,
Range=LargestObservation–SmallestObservation Range=$119.63–$0=$119.63
Theneachclasswidthbecomes: Range÷(#classes)=119.63÷8≈152.31BuildingaHistogram…
2.32BuildingaHistogram…
2.33ShapesofHistograms…SymmetryAhistogramissaidtobesymmetricif,whenwedrawaverticallinedownthecenterofthehistogram,thetwosidesareidenticalinshapeandsize:FrequencyVariableFrequencyVariableFrequencyVariable2.34ShapesofHistograms…SkewnessAskewedhistogramisonewithalongtailextendingtoeithertherightortheleft:FrequencyVariableFrequencyVariablePositivelySkewedNegativelySkewed2.35ShapesofHistograms…ModalityAunimodalhistogramisonewithasinglepeak,whileabimodalhistogramisonewithtwopeaks:FrequencyVariableUnimodalFrequencyVariableBimodalAmodalclassistheclasswiththelargestnumberofobservations2.36ShapesofHistograms…BellShapeAspecialtypeofsymmetric
unimodalhistogramisonethatisbellshaped:FrequencyVariableBellShapedManystatisticaltechniquesrequirethatthepopulationbebellshaped.Drawingthehistogramhelpsverifytheshapeofthepopulationinquestion.2.37HistogramComparison…Compare&contrastthefollowinghistogramsbasedondatafromEx.2.6&Ex.2.7:Thetwocourses,BusinessStatisticsandMathematicalStatisticshaveverydifferenthistograms…unimodalvs.bimodalspreadofthemarks(narrower|wider)2.38Stem&LeafDisplay…Retainsinformationaboutindividualobservationsthatwouldnormallybelostinthecreationofahistogram.Spliteachobservationintotwoparts,astemandaleaf:e.g.Observationvalue:42.19Thereareseveralwaystosplititup…Wecouldsplititatthedecimalpoint:Orsplititatthe“tens”position(whileroundingtothenearestintegerinthe“ones”position)StemLeaf4219422.39Stem&LeafDisplay…Continuethisprocessforalltheobservations.Then,usethe“stems”fortheclassesandeachleafbecomespartofthehistogram(basedonExample2.4data)asfollows…Stem Leaf
0 0000000000111112222223333345555556666666778888999999
1 000001111233333334455555667889999
2 0000111112344666778999
3 001335589
4 124445589
5 33566
6 3458
7 022224556789
8 334457889999
9 00112222233344555999
10 001344446699
11 124557889Thus,westillhaveaccesstoouroriginaldatapoint’svalue!2.40HistogramandStem&Leaf…Comparetheoverallshapesofthefigures…2.41Ogive…(pronounced“Oh-jive”)isagraphof acumulative
frequencydistribution.Wecreateanogiveinthreesteps…First,fromthefrequencydistributioncreatedearlier,calculaterelativefrequencies:RelativeFrequency=#ofobservationsinaclass Total#ofobservations2.42RelativeFrequencies…Forexample,wehad71observationsinourfirstclass(telephonebillsfrom$0.00to$15.00).Thus,therelativefrequencyforthisclassis71÷200(thetotal#ofphonebills)=0.355(or35.5%)2.43Ogive…Isagraphofacumulative
frequencydistribution.Wecreateanogiveinthreesteps…1)Calculaterelativefrequencies.2)Calculatecumulativerelativefrequenciesbyaddingthecurrentclass’relativefrequencytothepreviousclass’cumulativerelativefrequency.(Forthefirstclass,itscumulativerelativefrequencyisjustitsrelativefrequency)2.44CumulativeRelativeFrequencies…firstclass…nextclass:.355+.185=.540lastclass:.930+.070=1.00::2.45Ogive…Isagraphofacumulative
frequencydistribution.1)Calculaterelativefrequencies.2)Calculatecumulativerelativefrequencies.3)Graphthecumulativerelativefrequencies…2.46Ogive…Theogivecanbeusedtoanswerquestionslike:Whattelephonebillvalueisatthe50thpercentile?(ReferalsotoFig.2.13inyourtextbook)“around$35”2.47DescribingTimeSeriesDataObservationsmeasuredatthesamepointintimearecalledcross-sectionaldata.Observationsmeasuredatsuccessivepointsintimearecalledtime-seriesdata.Time-seriesdatagraphedonalinechart,whichplotsthevalueofthevariableontheverticalaxisagainstthetimeperiodsonthehorizontalaxis.2.48Example2.8Werecordedthemonthlyaverageretailpriceofgasolinesince1978.
Xm02-08Drawalinecharttodescribethesedataandbrieflydescribetheresults.2.49Example2.82.50Example2.9PriceofGasolinein1982-84ConstantDollarsXm02-09RemovetheeffectofinflationinExample2.8todeterminewhethergasolinepricesarehigherthantheyhavebeeninthepastafterremovingtheeffectofinflation.2.51Example2.92.52RelationshipbetweenTwoNominalVariables…Sofarwe’velookedattabularandgraphicaltechniquesforonevariable(eithernominalorintervaldata).Across-classificationtable(orcross-tabulationtable)isusedtodescribetherelationshipbetweentwonominalvariables.Across-classificationtableliststhefrequencyofeachcombinationofthevaluesofthetwovariables…2.53Example2.10InamajorNorthAmericancitytherearefourcompetingnewspapers:thePost,GlobeandMail,Sun,andStar.Tohelpdesignadvertisingcampaigns,theadvertisingmanagersofthenewspapersneedtoknowwhichsegmentsofthenewspapermarketarereadingtheirpapers.Asurveywasconductedtoanalyzetherelationshipbetweennewspapersreadandoccupation.2.54Example2.10Asampleofnewspaperreaderswasaskedtoreportwhichnewspapertheyread:GlobeandMail(1)Post(2),Star(3),Sun(4),andtoindicatewhethertheywereblue-collarworker(1),white-collarworker(2),orprofessional(3).TheresponsesarestoredinfileXm02-10.2.55Example2.10Bycountingthenumberoftimeseachofthe12combinationsoccurs,weproducedtheTable2.9. OccupationNewspaper BlueCollar WhiteCollar Professional TotalG&M 27 29 33 89Post 18 43 51 112Star 38 21 22 81Sun 37 15 20 72Total 120 108 126 354
2.56Example2.10Ifoccupationandnewspaperarerelated,thentherewillbedifferencesinthenewspapersreadamongtheoccupations.Aneasywaytoseethisistocovertthefrequenciesineachcolumntorelativefrequenciesineachcolumn.Thatis,computethecolumntotalsanddivideeachfrequencybyitscolumntotal. OccupationNewspaper BlueCollar WhiteCollar Professional G&M 27/120=.23 29/108=.27 33/126=.26 Post 18/120=.15 43/108=.40 51/126=.40 Star 38/120=.32 21/108=.19 22/126=.17 Sun 37/120=.31 15/108=.14 20/126=.16 2.57Example2.10Interpretation:Therelativefrequenciesinthecolumns2&3aresimilar,buttherearelargedifferencesbetweencolumns1and2andbetweencolumns1and3.Thistellsusthatbluecollarworkerstendtoreaddifferentnewspapersfrombothwhitecollarworkersandprofessionalsandthatwhitecollarandprofessionalsarequitesimilarintheirnewspaperchoice.dissimilarsimilar2.58GraphingtheRelationshipBetweenTwoNominalVariables…Usethedatafromthecross-classificationtabletocreatebarcharts…ProfessionalstendtoreadtheGlobe&MailmorethantwiceasoftenastheStarorSun…2.59GraphingtheRelationshipBetweenTwoIntervalVariables…Movingfromnominaldatatointervaldata,wearefrequentlyinterestedinhowtwointervalvariablesarerelated.Toexplorethisrelationship,weemployascatterdiagram,whichplotstwovariablesagainstoneanother.TheindependentvariableislabeledXandisusuallyplacedonthehorizontalaxis,whiletheother,dependentvariable,Y,ismappedtotheverticalaxis.2.60Example2.12Arealestateagentwantedtoknowtowhatextentthesellingpriceofahomeisrelatedtoitssize.Toacquirethisinformationhetookasampleof12homesthathadrecentlysold,recordingthepriceinthousandsofdollarsandthesizeinhundredsofsquarefeet.Thesedataarelistedintheaccompanyingtable.Useagraphicaltechniquetodescribetherelationshipbetweensizeandprice.Xm02-12Size 231826202214332823202718Price 3152293552612342163083062892042651952.61Example2.12Itappearsthatinfactthereisarelationship,thatis,thegreaterthehousesizethegreaterthesellingp
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 一紙合同定乾坤:離婚孩子撫養(yǎng)權新規(guī)
- 個人合同轉讓授權委托書范文
- 個人與個人投資合作合同
- 中外技術研發(fā)合作合同范本
- 個人貸款合同模板版
- 個人與公司間的借款合同范本
- 個人與企業(yè)土地購置合同
- 上海市常用勞務合同范本
- 個人房產抵押借款合同
- 汽車泵租賃合同
- 2022年中國電信維護崗位認證動力專業(yè)考試題庫大全-上(單選、多選題)
- 《電氣作業(yè)安全培訓》課件
- 水平二(四年級第一學期)體育《小足球(18課時)》大單元教學計劃
- 《關于時間管理》課件
- 醫(yī)藥高等數(shù)學智慧樹知到課后章節(jié)答案2023年下浙江中醫(yī)藥大學
- 城市道路智慧路燈項目 投標方案(技術標)
- 水泥采購投標方案(技術標)
- 醫(yī)院招標采購管理辦法及實施細則(試行)
- 初中英語-Unit2 My dream job(writing)教學設計學情分析教材分析課后反思
- 廣州市勞動仲裁申請書
- 江西省上饒市高三一模理綜化學試題附參考答案
評論
0/150
提交評論