江蘇如皋市江安鎮(zhèn)中心中學(xué)2023屆第一次高考科目教學(xué)質(zhì)量檢測試題數(shù)學(xué)試題_第1頁
江蘇如皋市江安鎮(zhèn)中心中學(xué)2023屆第一次高考科目教學(xué)質(zhì)量檢測試題數(shù)學(xué)試題_第2頁
江蘇如皋市江安鎮(zhèn)中心中學(xué)2023屆第一次高考科目教學(xué)質(zhì)量檢測試題數(shù)學(xué)試題_第3頁
江蘇如皋市江安鎮(zhèn)中心中學(xué)2023屆第一次高考科目教學(xué)質(zhì)量檢測試題數(shù)學(xué)試題_第4頁
江蘇如皋市江安鎮(zhèn)中心中學(xué)2023屆第一次高考科目教學(xué)質(zhì)量檢測試題數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇如皋市江安鎮(zhèn)中心中學(xué)2023屆第一次高考科目教學(xué)質(zhì)量檢測試題數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,則()A. B. C.3 D.42.記為數(shù)列的前項和數(shù)列對任意的滿足.若,則當取最小值時,等于()A.6 B.7 C.8 D.93.如圖,在三棱錐中,平面,,現(xiàn)從該三棱錐的個表面中任選個,則選取的個表面互相垂直的概率為()A. B. C. D.4.設(shè)分別為雙曲線的左、右焦點,過點作圓的切線,與雙曲線的左、右兩支分別交于點,若,則雙曲線漸近線的斜率為()A. B. C. D.5.已知,則下列說法中正確的是()A.是假命題 B.是真命題C.是真命題 D.是假命題6.《九章算術(shù)》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤;斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現(xiàn)在有一根金箠,長五尺在粗的一端截下一尺,重斤;在細的一端截下一尺,重斤,問各尺依次重多少?”按這一問題的顆設(shè),假設(shè)金箠由粗到細各尺重量依次成等差數(shù)列,則從粗端開始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤7.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.8.設(shè)為銳角,若,則的值為()A. B. C. D.9.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知圓M:x2+y2-2ay=0a>0截直線x+y=0A.內(nèi)切 B.相交 C.外切 D.相離11.已知在中,角的對邊分別為,若函數(shù)存在極值,則角的取值范圍是()A. B. C. D.12.已知,則下列關(guān)系正確的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則_____.14.已知數(shù)列滿足,且,則______.15.已知橢圓:的左、右焦點分別為,,如圖是過且垂直于長軸的弦,則的內(nèi)切圓方程是________.16.某校名學(xué)生參加軍事冬令營活動,活動期間各自扮演一名角色進行分組游戲,角色按級別從小到大共種,分別為士兵、排長、連長、營長、團長、旅長、師長、軍長和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級別連續(xù)的個不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.18.(12分)已知橢圓的焦距為2,且過點.(1)求橢圓的方程;(2)設(shè)為的左焦點,點為直線上任意一點,過點作的垂線交于兩點,(?。┳C明:平分線段(其中為坐標原點);(ⅱ)當取最小值時,求點的坐標.19.(12分)已知函數(shù)f(x)=x(1)討論fx(2)當x≥-1時,fx+a20.(12分)為了實現(xiàn)中華民族偉大復(fù)興之夢,把我國建設(shè)成為富強民主文明和諧美麗的社會主義現(xiàn)代化強國,黨和國家為勞動者開拓了寬廣的創(chuàng)造性勞動的舞臺.借此“東風(fēng)”,某大型現(xiàn)代化農(nóng)場在種植某種大棚有機無公害的蔬菜時,為創(chuàng)造更大價值,提高畝產(chǎn)量,積極開展技術(shù)創(chuàng)新活動.該農(nóng)場采用了延長光照時間和降低夜間溫度兩種不同方案.為比較兩種方案下產(chǎn)量的區(qū)別,該農(nóng)場選取了40間大棚(每間一畝),分成兩組,每組20間進行試點.第一組采用延長光照時間的方案,第二組采用降低夜間溫度的方案.同時種植該蔬菜一季,得到各間大棚產(chǎn)量數(shù)據(jù)信息如下圖:(1)如果你是該農(nóng)場的負責(zé)人,在只考慮畝產(chǎn)量的情況下,請根據(jù)圖中的數(shù)據(jù)信息,對于下一季大棚蔬菜的種植,說出你的決策方案并說明理由;(2)已知種植該蔬菜每年固定的成本為6千元/畝.若采用延長光照時間的方案,光照設(shè)備每年的成本為0.22千元/畝;若采用夜間降溫的方案,降溫設(shè)備的每年成本為0.2千元/畝.已知該農(nóng)場共有大棚100間(每間1畝),農(nóng)場種植的該蔬菜每年產(chǎn)出兩次,且該蔬菜市場的收購均價為1千元/千斤.根據(jù)題中所給數(shù)據(jù),用樣本估計總體,請計算在兩種不同的方案下,種植該蔬菜一年的平均利潤;(3)農(nóng)場根據(jù)以往該蔬菜的種植經(jīng)驗,認為一間大棚畝產(chǎn)量超過5.25千斤為增產(chǎn)明顯.在進行夜間降溫試點的20間大棚中隨機抽取3間,記增產(chǎn)明顯的大棚間數(shù)為,求的分布列及期望.21.(12分)如圖在棱錐中,為矩形,面,(1)在上是否存在一點,使面,若存在確定點位置,若不存在,請說明理由;(2)當為中點時,求二面角的余弦值.22.(10分)已知橢圓的離心率為,橢圓C的長軸長為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點,是否存在實數(shù)k使得以線段為直徑的圓恰好經(jīng)過坐標原點O?若存在,求出k的值;若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據(jù)復(fù)數(shù)相等的特征,求出和,再利用復(fù)數(shù)的模公式,即可得出結(jié)果.【詳解】因為,所以,解得則.故選:A.【點睛】本題考查相等復(fù)數(shù)的特征和復(fù)數(shù)的模,屬于基礎(chǔ)題.2、A【解析】

先令,找出的關(guān)系,再令,得到的關(guān)系,從而可求出,然后令,可得,得出數(shù)列為等差數(shù)列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對任意的,所以是等差數(shù)列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當時,取最小值.故選:A【點睛】此題考查的是由數(shù)列的遞推式求數(shù)列的通項,采用了賦值法,屬于中檔題.3、A【解析】

根據(jù)線面垂直得面面垂直,已知平面,由,可得平面,這樣可確定垂直平面的對數(shù),再求出四個面中任選2個的方法數(shù),從而可計算概率.【詳解】由已知平面,,可得,從該三棱錐的個面中任選個面共有種不同的選法,而選取的個表面互相垂直的有種情況,故所求事件的概率為.故選:A.【點睛】本題考查古典概型概率,解題關(guān)鍵是求出基本事件的個數(shù).4、C【解析】

如圖所示:切點為,連接,作軸于,計算,,,,根據(jù)勾股定理計算得到答案.【詳解】如圖所示:切點為,連接,作軸于,,故,在中,,故,故,,根據(jù)勾股定理:,解得.故選:.【點睛】本題考查了雙曲線的漸近線斜率,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.5、D【解析】

舉例判斷命題p與q的真假,再由復(fù)合命題的真假判斷得答案.【詳解】當時,故命題為假命題;記f(x)=ex﹣x的導(dǎo)數(shù)為f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上遞減,在(0,+∞)上遞增,∴f(x)>f(0)=1>0,即,故命題為真命題;∴是假命題故選D【點睛】本題考查復(fù)合命題的真假判斷,考查全稱命題與特稱命題的真假,考查指對函數(shù)的圖象與性質(zhì),是基礎(chǔ)題.6、B【解析】

依題意,金箠由粗到細各尺重量構(gòu)成一個等差數(shù)列,則,由此利用等差數(shù)列性質(zhì)求出結(jié)果.【詳解】設(shè)金箠由粗到細各尺重量依次所成得等差數(shù)列為,設(shè)首項,則,公差,.故選B【點睛】本題考查了等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.7、C【解析】

由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【詳解】連接,,如圖:又,則為異面直線與所成的角.因為且三棱柱為直三棱柱,∴∴面,∴,又,,∴,∴,解得.故選C【點睛】考查直三棱柱的定義,線面垂直的性質(zhì),考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎(chǔ)題.8、D【解析】

用誘導(dǎo)公式和二倍角公式計算.【詳解】.故選:D.【點睛】本題考查誘導(dǎo)公式、余弦的二倍角公式,解題關(guān)鍵是找出已知角和未知角之間的聯(lián)系.9、B【解析】

或,從而明確充分性與必要性.【詳解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分條件故選【點睛】本題考查充分性與必要性,簡單三角方程的解法,屬于基礎(chǔ)題.10、B【解析】化簡圓M:x2+(y-a)2=a又N(1,1),r11、C【解析】

求出導(dǎo)函數(shù),由有不等的兩實根,即可得不等關(guān)系,然后由余弦定理可及余弦函數(shù)性質(zhì)可得結(jié)論.【詳解】,.若存在極值,則,又.又.故選:C.【點睛】本題考查導(dǎo)數(shù)與極值,考查余弦定理.掌握極值存在的條件是解題關(guān)鍵.12、A【解析】

首先判斷和1的大小關(guān)系,再由換底公式和對數(shù)函數(shù)的單調(diào)性判斷的大小即可.【詳解】因為,,,所以,綜上可得.故選:A【點睛】本題考查了換底公式和對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

對原方程兩邊求導(dǎo),然后令求得表達式的值.【詳解】對等式兩邊求導(dǎo),得,令,則.【點睛】本小題主要考查二項式展開式,考查利用導(dǎo)數(shù)轉(zhuǎn)化已知條件,考查賦值法,屬于中檔題.14、【解析】

數(shù)列滿足知,數(shù)列以3為公比的等比數(shù)列,再由已知結(jié)合等比數(shù)列的性質(zhì)求得的值即可.【詳解】,數(shù)列是以3為公比的等比數(shù)列,又,,.故答案為:.【點睛】本題考查了等比數(shù)列定義,考查了對數(shù)的運算性質(zhì),考查了等比數(shù)列的通項公式,是中檔題.15、【解析】

利用公式計算出,其中為的周長,為內(nèi)切圓半徑,再利用圓心到直線AB的距離等于半徑可得到圓心坐標.【詳解】由已知,,,,設(shè)內(nèi)切圓的圓心為,半徑為,則,故有,解得,由,或(舍),所以的內(nèi)切圓方程為.故答案為:.【點睛】本題考查橢圓中三角形內(nèi)切圓的方程問題,涉及到橢圓焦點三角形、橢圓的定義等知識,考查學(xué)生的運算能力,是一道中檔題.16、【解析】

對新加入的學(xué)生所扮演的角色進行分類討論,分析各種情況下個學(xué)生所扮演的角色的分組,綜合可得出結(jié)論.【詳解】依題意,名學(xué)生分成組,則一定是個人組和個人組.①若新加入的學(xué)生是士兵,則可以將這個人分組如下;名士兵;士兵、排長、連長各名;營長、團長、旅長各名;師長、軍長、司令各名;名司令.所以新加入的學(xué)生可以是士兵,由對稱性可知也可以是司令;②若新加入的學(xué)生是排長,則可以將這個人分組如下:名士兵;連長、營長、團長各名;旅長、師長、軍長各名;名司令;名排長.所以新加入的學(xué)生可以是排長,由對稱性可知也可以是軍長;③若新加入的學(xué)生是連長,則可以將這個人分組如下:名士兵;士兵、排長、連長各名;連長、營長、團長各名;旅長、師長、軍長各名;名司令.所以新加入的學(xué)生可以是連長,由對稱性可知也可以是師長;④若新加入的學(xué)生是營長,則可以將這個人分組如下:名士兵;排長、連長、營長各名;營長、團長、旅長各名;師長、軍長、司令各名;名司令.所以新加入的學(xué)生可以是營長,由對稱性可知也可以是旅長;⑤若新加入的學(xué)生是團長,則可以將這個人分組如下:名士兵;排長、連長、營長各名;旅長、師長、軍長各名;名司令;名團長.所以新加入的學(xué)生可以是團長.綜上所述,新加入學(xué)生可以扮演種角色.故答案為:.【點睛】本題考查分類計數(shù)原理的應(yīng)用,解答的關(guān)鍵就是對新加入的學(xué)生所扮演的角色進行分類討論,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)最小值和最大值.【解析】試題分析:(1)由已知利用兩角和與差的三角函數(shù)公式及倍角公式將的解析式化為一個復(fù)合角的三角函數(shù)式,再利用正弦型函數(shù)的最小正周期計算公式,即可求得函數(shù)的最小正周期;(2)由(1)得函數(shù),分析它在閉區(qū)間上的單調(diào)性,可知函數(shù)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),由此即可求得函數(shù)在閉區(qū)間上的最大值和最小值.也可以利用整體思想求函數(shù)在閉區(qū)間上的最大值和最小值.由已知,有的最小正周期.(2)∵在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),,,∴函數(shù)在閉區(qū)間上的最大值為,最小值為.考點:1.兩角和與差的正弦公式、二倍角的正弦與余弦公式;2.三角函數(shù)的周期性和單調(diào)性.18、(1)(2)(?。┮娊馕觯áⅲc的坐標為.【解析】

(1)由題意得,再由的關(guān)系求出,即可得橢圓的標準方程;(2)(i)設(shè),的中點為,,設(shè)直線的方程為,代入橢圓方程中,運用根與系數(shù)的關(guān)系和中點坐標公式,結(jié)合三點共線的方法:斜率相等,即可得證;(ii)利用兩點間的距離公式及弦長公式將表示出來,由換元法的對勾函數(shù)的單調(diào)性,可得取最小值時的條件獲得等量關(guān)系,從而確定點的坐標.【詳解】解:(1)由題意得,,所以,所以橢圓方程為(2)設(shè),的中點為,(?。┳C明:由,可設(shè)直線的方程為,代入橢圓方程,得,所以,所以,則直線的斜率為,因為,所以,所以三點共線,所以平分線段;(ii)由兩點間的距離公式得由弦長公式得所以,令,則,由在上遞增,可得,即時,取得最小值4,所以當取最小值時,點的坐標為【點睛】此題考那可是橢圓方程和性質(zhì),主要考查橢圓方程的運用,運用根與系數(shù)的關(guān)系和中點坐標公式,同時考查弦長公式,屬于較難題.19、(1)見解析;(2)-∞,1【解析】

(1)f′(x)=(x+1)ex-ax-a=(x+1)(ex-a).對a分類討論,即可得出單調(diào)性.

(2)由xex-ax-a+1≥0,可得a(x+1)≤xex+1,當x=-1時,0≤-1e+1恒成立.當x>-1時,a≤xe【詳解】解法一:(1)f①當a≤0時,x(-∞-1(-1,+∞)f-0+f(x)↘極小值↗所以f(x)在(-∞,-1)上單調(diào)遞減,在(-1,+∞)單調(diào)遞增.②當a>0時,f'(x)=0的根為x=ln若lna>-1,即a>x(-∞,-1)-1(-1,ln(f+0-0+f(x)↗極大值↘極小值↗所以f(x)在(-∞,-1),(lna,+∞)上單調(diào)遞增,在若lna=-1,即a=f'(x)≥0在(-∞,+∞)上恒成立,所以f(x)在若lna<-1,即0<a<x(-∞,ln(-1(-1,+∞)f+0-0+f(x)↗極大值↘極小值↗所以f(x)在(-∞,lna),(-1,+∞)上單調(diào)遞增,在綜上:當a≤0時,f(x)在(-∞,-1)上單調(diào)遞減,在(-1,+∞)上單調(diào)遞增;當0<a<1e時,f(x)在(-∞,lna),自a=1e時,f(x)在當a>1e時,f(x)在(-∞,-1),(ln(2)因為xex-ax-a+1≥0當x=-1時,0≤-1當x>-1時,a≤x令g(x)=xex設(shè)h(x)=e因為h'(x)=e即hx=e又因為h0=0,所以g(x)=xex則g(x)min=g(0)=1綜上,a的取值范圍為-∞,1.解法二:(1)同解法一;(2)令g(x)=f(x)+a所以g'當a≤0時,g'(x)≥0,則g(x)在所以g(x)≥g(-1)=-1當0<a≤1時,令h(x)=e因為h'(x)=2ex+x又因為h-1=-a<0,所以h(x)=ex+xexx(-1x(g-0+g(x)↘極小值↗g==-e當a>1時,g(0)=-a+1<0,不滿足題意.綜上,a的取值范圍為-∞,1.【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、分類討論方法、方程與不等式的解法,考查了推理能力與計算能力,屬于難題.20、(1)見解析;(2)(i)該農(nóng)場若采用延長光照時間的方法,預(yù)計每年的利潤為426千元;(ii)若采用降低夜間溫度的方法,預(yù)計每年的利潤為424千元;(3)分布列見解析,.【解析】

(1)估計第一組數(shù)據(jù)平均數(shù)和第二組數(shù)據(jù)平均數(shù)來選擇.(2)對于兩種方法,先計算出每畝平均產(chǎn)量,再算農(nóng)場一年的利潤.(3)估計頻率分布直方圖可知,增產(chǎn)明顯的大棚間數(shù)為5間,由題意可知,的可能取值有0,1,2,3,再算出相應(yīng)的概率,寫出分布列,再求期望.【詳解】(1)第一組數(shù)據(jù)平均數(shù)為千斤/畝,第二組數(shù)據(jù)平均數(shù)為千斤/畝,可知第一組方法較好,所以采用延長光照時間的方法;((2)(i)對于采用延長光照時間的方法:每畝平均產(chǎn)量為千斤.∴該農(nóng)場一年的利潤為千元.(ii)對于采用降低夜間溫度的方法:每畝平均產(chǎn)量為千斤,∴該農(nóng)場一年的利潤為千元.因此,該農(nóng)場若采用延長光照時間的方法,預(yù)計每年的利潤為426千元;若采用降低夜間溫度的方法,預(yù)計每年的利潤為424千元.(3)由圖可知,增產(chǎn)明顯的大棚間數(shù)為5間,由題意可知,的可能取值有0,1,2,3,;;;.所以的分布列為0123所以.【點睛】本題主要考查樣本估計總體和離散型隨機變量的分布列,還考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論