信號(hào)與線性系統(tǒng)分析第1章_第1頁(yè)
信號(hào)與線性系統(tǒng)分析第1章_第2頁(yè)
信號(hào)與線性系統(tǒng)分析第1章_第3頁(yè)
信號(hào)與線性系統(tǒng)分析第1章_第4頁(yè)
信號(hào)與線性系統(tǒng)分析第1章_第5頁(yè)
已閱讀5頁(yè),還剩61頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第一章信號(hào)與系統(tǒng)1.1緒言

一、信號(hào)的概念二、系統(tǒng)的概念1.2信號(hào)的描述與分類(lèi)

一、信號(hào)的描述二、信號(hào)的分類(lèi)1.3信號(hào)的基本運(yùn)算

一、加法和乘法二、時(shí)間變換1.4階躍函數(shù)和沖激函數(shù)

一、階躍函數(shù)二、沖激函數(shù)

三、沖激函數(shù)的性質(zhì)四、序列δ(k)和ε(k)1.5系統(tǒng)的性質(zhì)及分類(lèi)

一、系統(tǒng)的定義二、系統(tǒng)的分類(lèi)及性質(zhì)

1.6系統(tǒng)的描述

一、連續(xù)系統(tǒng)二、離散系統(tǒng)

1.7LTI系統(tǒng)分析方法概述點(diǎn)擊目錄,進(jìn)入相關(guān)章節(jié)目前一頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)

什么是信號(hào)?什么是系統(tǒng)?為什么把這兩個(gè)概念連在一起?一、信號(hào)的概念1.消息(message):人們常常把來(lái)自外界的各種報(bào)道統(tǒng)稱(chēng)為消息。消息:反映知識(shí)狀態(tài)的改變。2.信息(information):

通常把消息中有意義的內(nèi)容稱(chēng)為信息。信息量=[收到某信息前對(duì)某事件的無(wú)知程度]-

[收到信息后對(duì)某事件的無(wú)知程度]1.1緒論第一章信號(hào)與系統(tǒng)它是信息論中的一個(gè)術(shù)語(yǔ)。目前二頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.1緒論3.信號(hào)(signal):信號(hào)是信息的載體。通過(guò)信號(hào)傳遞信息。

信號(hào)我們并不陌生,如剛才鈴聲—聲信號(hào),表示該上課了;十字路口的紅綠燈—光信號(hào),指揮交通;電視機(jī)天線接受的電視信息—電信號(hào);廣告牌上的文字、圖象信號(hào)等等。

為了有效地傳播和利用信息,常常需要將信息轉(zhuǎn)換成便于傳輸和處理的信號(hào)。目前三頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)二、系統(tǒng)的概念

一般而言,系統(tǒng)(system)是指若干相互關(guān)聯(lián)的事物組合而成具有特定功能的整體。

如手機(jī)、電視機(jī)、通信網(wǎng)、計(jì)算機(jī)網(wǎng)等都可以看成系統(tǒng)。它們所傳送的語(yǔ)音、音樂(lè)、圖象、文字等都可以看成信號(hào)。信號(hào)的概念與系統(tǒng)的概念常常緊密地聯(lián)系在一起。

信號(hào)的產(chǎn)生、傳輸和處理需要一定的物理裝置,這樣的物理裝置常稱(chēng)為系統(tǒng)。

系統(tǒng)的基本作用是對(duì)輸入信號(hào)進(jìn)行加工和處理,將其轉(zhuǎn)換為所需要的輸出信號(hào)。系統(tǒng)輸入信號(hào)激勵(lì)輸出信號(hào)響應(yīng)1.1緒論目前四頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.2信號(hào)的描述和分類(lèi)第一章信號(hào)與系統(tǒng)一、信號(hào)的描述

信號(hào)是信息的一種物理體現(xiàn)。它一般是隨時(shí)間或位置變化的物理量。

信號(hào)按物理屬性分:電信號(hào)和非電信號(hào)。它們可以相互轉(zhuǎn)換。電信號(hào)容易產(chǎn)生,便于控制,易于處理。本課程討論電信號(hào)---簡(jiǎn)稱(chēng)“信號(hào)”。電信號(hào)的基本形式:隨時(shí)間變化的電壓或電流。描述信號(hào)的常用方法(1)表示為時(shí)間的函數(shù)(2)信號(hào)的圖形表示--波形“信號(hào)”與“函數(shù)”兩詞常相互通用。目前五頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.2信號(hào)的描述和分類(lèi)二、信號(hào)的分類(lèi)1.確定信號(hào)和隨機(jī)信號(hào)

可以用確定時(shí)間函數(shù)表示的信號(hào),稱(chēng)為確定信號(hào)或規(guī)則信號(hào)。如正弦信號(hào)。若信號(hào)不能用確切的函數(shù)描述,它在任意時(shí)刻的取值都具有不確定性,只可能知道它的統(tǒng)計(jì)特性,如在某時(shí)刻取某一數(shù)值的概率,這類(lèi)信號(hào)稱(chēng)為隨機(jī)信號(hào)或不確定信號(hào)。電子系統(tǒng)中的起伏熱噪聲、雷電干擾信號(hào)就是兩種典型的隨機(jī)信號(hào)。

研究確定信號(hào)是研究隨機(jī)信號(hào)的基礎(chǔ)。本課程只討論確定信號(hào)。目前六頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.2信號(hào)的描述和分類(lèi)2.連續(xù)信號(hào)和離散信號(hào)

根據(jù)信號(hào)定義域的特點(diǎn)可分為連續(xù)時(shí)間信號(hào)和離散時(shí)間信號(hào)。

在連續(xù)的時(shí)間范圍內(nèi)(-∞<t<∞)有定義的信號(hào)稱(chēng)為連續(xù)時(shí)間信號(hào),簡(jiǎn)稱(chēng)連續(xù)信號(hào)。函數(shù)值連續(xù)時(shí)常稱(chēng)為模擬信號(hào)。這里的“連續(xù)”指函數(shù)的定義域—時(shí)間是連續(xù)的,但可含間斷點(diǎn),至于值域可連續(xù)也可不連續(xù)。值域連續(xù)值域不連續(xù)(1)連續(xù)時(shí)間信號(hào):目前七頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.2信號(hào)的描述和分類(lèi)僅在一些離散的瞬間才有定義的信號(hào)稱(chēng)為離散時(shí)間信號(hào),簡(jiǎn)稱(chēng)離散信號(hào)。取值為規(guī)定數(shù)值時(shí)常稱(chēng)為數(shù)字信號(hào)。這里的“離散”指信號(hào)的定義域—時(shí)間是離散的,它只在某些規(guī)定的離散瞬間給出函數(shù)值,其余時(shí)間無(wú)定義。

如右圖的f(t)僅在一些離散時(shí)刻tk(k=0,±1,±2,…)才有定義,其余時(shí)間無(wú)定義。相鄰離散點(diǎn)的間隔Tk=tk+1-tk可以相等也可不等。通常取等間隔T,離散信號(hào)可表示為f(kT),簡(jiǎn)寫(xiě)為f(k),這種等間隔的離散信號(hào)也常稱(chēng)為序列。其中k稱(chēng)為序號(hào)。離散時(shí)間信號(hào):目前八頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.2信號(hào)的描述和分類(lèi)上述離散信號(hào)可簡(jiǎn)畫(huà)為用表達(dá)式可寫(xiě)為或?qū)憺閒(k)={…,0,1,2,-1.5,2,0,1,0,…}↑k=0通常將對(duì)應(yīng)某序號(hào)m的序列值稱(chēng)為第m個(gè)樣點(diǎn)的“樣值”。目前九頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.2信號(hào)的描述和分類(lèi)3.周期信號(hào)和非周期信號(hào)

周期信號(hào)(periodsignal)是定義在(-∞,∞)區(qū)間,每隔一定時(shí)間T(或整數(shù)N),按相同規(guī)律重復(fù)變化的信號(hào)。連續(xù)周期信號(hào)f(t)滿(mǎn)足

f(t)=f(t+mT),m=0,±1,±2,…離散周期信號(hào)f(k)滿(mǎn)足

f(k)=f(k+mN),m=0,±1,±2,…滿(mǎn)足上述關(guān)系的最小T(或整數(shù)N)稱(chēng)為該信號(hào)的周期。不具有周期性的信號(hào)稱(chēng)為非周期信號(hào)。目前十頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.2信號(hào)的描述和分類(lèi)例1

判斷下列信號(hào)是否為周期信號(hào),若是,確定其周期。(1)f1(t)=sin2t+cos3t(2)f2(t)=cos2t+sinπt解:兩個(gè)周期信號(hào)x(t),y(t)的周期分別為T(mén)1和T2,若其周期之比T1/T2為有理數(shù),則其和信號(hào)x(t)+y(t)仍然是周期信號(hào),其周期為T(mén)1和T2的最小公倍數(shù)。(1)sin2t是周期信號(hào),其角頻率和周期分別為

ω1=2rad/s,T1=2π/ω1=πscos3t是周期信號(hào),其角頻率和周期分別為

ω2=3rad/s,T2=2π/ω2=(2π/3)s由于T1/T2=3/2為有理數(shù),故f1(t)為周期信號(hào),其周期為T(mén)1和T2的最小公倍數(shù)2π。(2)

cos2t和sinπt的周期分別為T(mén)1=πs,T2=2s,由于T1/T2為無(wú)理數(shù),故f2(t)為非周期信號(hào)。目前十一頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.2信號(hào)的描述和分類(lèi)例2

判斷正弦序列f(k)=sin(βk)是否為周期信號(hào),若是,確定其周期。解

f

(k)=sin(βk)=sin(βk+2mπ),m=0,±1,±2,…式中β稱(chēng)為正弦序列的數(shù)字角頻率,單位:rad。由上式可見(jiàn):僅當(dāng)2π/β為整數(shù)時(shí),正弦序列具有周期N=2π/β。當(dāng)2π/β為有理數(shù)時(shí),正弦序列仍為具有周期性,但其周期為N=M(2π/β),M取使N為整數(shù)的最小整數(shù)。當(dāng)2π/β為無(wú)理數(shù)時(shí),正弦序列為非周期序列。目前十二頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.2信號(hào)的描述和分類(lèi)例3

判斷下列序列是否為周期信號(hào),若是,確定其周期。(1)f1(k)=sin(3πk/4)+cos(0.5πk)

(2)f2(k)=sin(2k)解(1)sin(3πk/4)和cos(0.5πk)的數(shù)字角頻率分別為β1=3π/4rad,β2=0.5πrad由于2π/β1=8/3,2π/β2=4為有理數(shù),故它們的周期分別為N1=8,N1=4,故f1(k)為周期序列,其周期為N1和N2的最小公倍數(shù)8。(2)sin(2k)的數(shù)字角頻率為β1=2rad;由于2π/β1=π為無(wú)理數(shù),故f2(k)=sin(2k)為非周期序列。由上面幾例可看出:①連續(xù)正弦信號(hào)一定是周期信號(hào),而正弦序列不一定是周期序列。②兩連續(xù)周期信號(hào)之和不一定是周期信號(hào),而兩周期序列之和一定是周期序列。目前十三頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.2信號(hào)的描述和分類(lèi)4.能量信號(hào)與功率信號(hào)

將信號(hào)f(t)施加于1Ω電阻上,它所消耗的瞬時(shí)功率為|f(t)|2,在區(qū)間(–∞,∞)的能量和平均功率定義為(1)信號(hào)的能量E(2)信號(hào)的功率P

若信號(hào)f(t)的能量有界,即E<∞,則稱(chēng)其為能量有限信號(hào),簡(jiǎn)稱(chēng)能量信號(hào)。此時(shí)P=0

若信號(hào)f(t)的功率有界,即P<∞,則稱(chēng)其為功率有限信號(hào),簡(jiǎn)稱(chēng)功率信號(hào)。此時(shí)E=∞目前十四頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.2信號(hào)的描述和分類(lèi)

相應(yīng)地,對(duì)于離散信號(hào),也有能量信號(hào)、功率信號(hào)之分。

若滿(mǎn)足的離散信號(hào),稱(chēng)為能量信號(hào)。若滿(mǎn)足的離散信號(hào),稱(chēng)為功率信號(hào)。

時(shí)限信號(hào)(僅在有限時(shí)間區(qū)間不為零的信號(hào))為能量信號(hào);周期信號(hào)屬于功率信號(hào),而非周期信號(hào)可能是能量信號(hào),也可能是功率信號(hào)。

有些信號(hào)既不是屬于能量信號(hào)也不屬于功率信號(hào),如f(t)=et。目前十五頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.2信號(hào)的描述和分類(lèi)5.一維信號(hào)與多維信號(hào)

從數(shù)學(xué)表達(dá)式來(lái)看,信號(hào)可以表示為一個(gè)或多個(gè)變量的函數(shù),稱(chēng)為一維或多維函數(shù)。

語(yǔ)音信號(hào)可表示為聲壓隨時(shí)間變化的函數(shù),這是一維信號(hào)。而一張黑白圖像每個(gè)點(diǎn)(像素)具有不同的光強(qiáng)度,任一點(diǎn)又是二維平面坐標(biāo)中兩個(gè)變量的函數(shù),這是二維信號(hào)。還有更多維變量的函數(shù)的信號(hào)。本課程只研究一維信號(hào),且自變量多為時(shí)間。6.因果信號(hào)與反因果信號(hào)

常將t=0時(shí)接入系統(tǒng)的信號(hào)f(t)[即在t<0,f(t)=0]稱(chēng)為因果信號(hào)或有始信號(hào)。階躍信號(hào)是典型的一個(gè)。而將t≥0,f(t)=0的信號(hào)稱(chēng)為反因果信號(hào)。目前十六頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.3信號(hào)的基本運(yùn)算

還有其他分類(lèi),如實(shí)信號(hào)與復(fù)信號(hào);左邊信號(hào)與右邊信號(hào)等等。1.3信號(hào)的基本運(yùn)算一、信號(hào)的+、-、×運(yùn)算

兩信號(hào)f1(·)和f2

(·)的相+、-、×指同一時(shí)刻兩信號(hào)之值對(duì)應(yīng)相加減乘。如目前十七頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.3信號(hào)的基本運(yùn)算二、信號(hào)的時(shí)間變換運(yùn)算

1.反轉(zhuǎn)

將f

(t)→f

(–t),f

(k)→f

(–k)稱(chēng)為對(duì)信號(hào)f(·)的反轉(zhuǎn)或反折。從圖形上看是將f(·)以縱坐標(biāo)為軸反轉(zhuǎn)180o。如目前十八頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.3信號(hào)的基本運(yùn)算

2.平移

將f

(t)→f

(t–t0),f

(k)→f

(k–k0)稱(chēng)為對(duì)信號(hào)f(·)的平移或移位。若t0(或k0)>0,則將f(·)右移;否則左移。如右移t→t–1左移t→t+1目前十九頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.3信號(hào)的基本運(yùn)算平移與反轉(zhuǎn)相結(jié)合法一:①先平移f

(t)→f

(t+2)②再反轉(zhuǎn)f

(t+2)→f

(–t+2)法二:①先反轉(zhuǎn)f

(t)→f

(–t)畫(huà)出f

(2–t)。②再平移f

(–t)→f

(–t+2)左移右移=f

[–(t–2)]注意:是對(duì)t的變換!目前二十頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.3信號(hào)的基本運(yùn)算

3.尺度變換(橫坐標(biāo)展縮)

將f

(t)→f

(at),稱(chēng)為對(duì)信號(hào)f(t)的尺度變換。若a>1,則波形沿橫坐標(biāo)壓縮;若0<a<1,則展開(kāi)。如t→2t

壓縮t→0.5t

展開(kāi)對(duì)于離散信號(hào),由于f

(ak)僅在為ak

為整數(shù)時(shí)才有意義,進(jìn)行尺度變換時(shí)可能會(huì)使部分信號(hào)丟失。因此一般不作波形的尺度變換。目前二十一頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.3信號(hào)的基本運(yùn)算平移、反轉(zhuǎn)、尺度變換相結(jié)合已知f

(t),畫(huà)出f

(–4–2t)。三種運(yùn)算的次序可任意。但一定要注意始終對(duì)時(shí)間t進(jìn)行。壓縮,得f

(2t–4)反轉(zhuǎn),得f

(–2t–4)右移4,得f

(t–4)目前二十二頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.3信號(hào)的基本運(yùn)算壓縮,得f

(2t)右移2,得f

(2t–4)反轉(zhuǎn),得f

(–2t–4)也可以先壓縮、再平移、最后反轉(zhuǎn)。目前二十三頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.3信號(hào)的基本運(yùn)算若已知f

(–4–2t),畫(huà)出f

(t)。反轉(zhuǎn),得f

(2t–4)展開(kāi),得f

(t–4)左移4,得f

(t)目前二十四頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.4階躍函數(shù)和沖激函數(shù)

階躍函數(shù)和沖激函數(shù)不同于普通函數(shù),稱(chēng)為奇異函數(shù)。研究奇異函數(shù)的性質(zhì)要用到廣義函數(shù)(或分配函數(shù))的理論。這里將直觀地引出階躍函數(shù)和沖激函數(shù)。1.4階躍函數(shù)和沖激函數(shù)一、階躍函數(shù)

下面采用求函數(shù)極限的方法定義階躍函數(shù)。選定一個(gè)函數(shù)γn(t)如圖所示。n→∞目前二十五頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.4階躍函數(shù)和沖激函數(shù)階躍函數(shù)性質(zhì):(1)可以方便地表示某些信號(hào)f(t)=2ε(t)-3ε(t-1)+ε(t-2)(2)用階躍函數(shù)表示信號(hào)的作用區(qū)間(3)積分目前二十六頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.4階躍函數(shù)和沖激函數(shù)二、沖激函數(shù)

單位沖激函數(shù)是個(gè)奇異函數(shù),它是對(duì)強(qiáng)度極大,作用時(shí)間極短一種物理量的理想化模型。它由如下特殊的方式定義(由狄拉克最早提出)也可采用下列直觀定義:對(duì)γn(t)求導(dǎo)得到如圖所示的矩形脈沖pn(t)。

高度無(wú)窮大,寬度無(wú)窮小,面積為1的對(duì)稱(chēng)窄脈沖。

目前二十七頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.4階躍函數(shù)和沖激函數(shù)沖激函數(shù)與階躍函數(shù)關(guān)系:可見(jiàn),引入沖激函數(shù)之后,間斷點(diǎn)的導(dǎo)數(shù)也存在。如f(t)=2ε(t+1)-2ε(t-1)f′(t)=2δ(t+1)-2δ(t-1)求導(dǎo)n→∞n→∞目前二十八頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.4階躍函數(shù)和沖激函數(shù)三、沖激函數(shù)的廣義函數(shù)定義

1.廣義函數(shù)的概念

普通函數(shù),若y=f(t)是將一維實(shí)數(shù)空間的t經(jīng)過(guò)f所規(guī)定的

運(yùn)算映射為一維實(shí)數(shù)空間的數(shù)y

將普通函數(shù)概念推廣,廣義函數(shù)可以這樣定義:

選擇一類(lèi)性能良好的函數(shù)φ(t),φ(t)稱(chēng)為檢驗(yàn)函數(shù)(相當(dāng)于自變量,一個(gè)廣義函數(shù)g(t)對(duì)檢驗(yàn)函數(shù)空間中的每個(gè)函數(shù)

φ(t)賦予一個(gè)數(shù)值N的映射,該數(shù)和廣義函數(shù)g(t)和檢驗(yàn)函數(shù)φ(t)有關(guān),記作g[φ(t)]廣義函數(shù)可以寫(xiě)為目前二十九頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)類(lèi)型定義式自變量定義域函數(shù)值普通函數(shù)y=f(t)t(t1,t2)f(t)廣義函數(shù)φ(t){φ(t)}表1.1廣義函數(shù)與普通函數(shù)的關(guān)系目前三十頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.4階躍函數(shù)和沖激函數(shù)

2.廣義函數(shù)的性質(zhì)性質(zhì)1:相等若

則性質(zhì)1:相等

則目前三十一頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.4階躍函數(shù)和沖激函數(shù)性質(zhì)3:尺度變化

性質(zhì)4:微分

目前三十二頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.4階躍函數(shù)和沖激函數(shù)

3.沖激函數(shù)的廣義函數(shù)定義[定義]

按廣義函數(shù)理論,沖激函數(shù)由下式確定

即沖激函數(shù)δ(t)作用于檢驗(yàn)函數(shù)φ(t)的效果是給它賦值為φ(0)

這常稱(chēng)為沖激函數(shù)的取樣性質(zhì)(或篩選性質(zhì))。簡(jiǎn)言之,能從檢驗(yàn)函數(shù)φ(t)中篩選出函數(shù)值φ(0)的廣義函數(shù)就稱(chēng)為沖激函數(shù)δ(t)。目前三十三頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.4階躍函數(shù)和沖激函數(shù)四、沖激函數(shù)的性質(zhì)

1.與普通函數(shù)f(t)的乘積——取樣性質(zhì)若f(t)在t=0、t=a處存在,則

f(t)δ(t)=f(0)δ(t),f(t)δ(t–a)=f(a)δ(t–a)0ε(t)目前三十四頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.4階躍函數(shù)和沖激函數(shù)

2.沖激函數(shù)的導(dǎo)數(shù)δ’(t)(也稱(chēng)沖激偶)

f(t)δ’(t)=f(0)δ’(t)–f’(0)δ(t)證明:[f(t)δ(t)]’=f(t)δ’(t)+f’(t)δ(t)f(t)δ’(t)=[f(t)δ(t)]’–f’(t)δ(t)=f(0)δ’(t)–f’(0)δ(t)δ’(t)的定義:δ(n)(t)的定義:目前三十五頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.4階躍函數(shù)和沖激函數(shù)

3.δ(t)的尺度變換證明見(jiàn)教材P20特例:若a>0,則=a,令x=at,則上式可寫(xiě)為若a>0,則=-a,有綜合以上結(jié)果,得:目前三十六頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.4階躍函數(shù)和沖激函數(shù)推論:(1)δ(2t)=0.5δ(t)(2)當(dāng)a=–1時(shí)所以,δ(–t)=δ(t)為偶函數(shù),

δ’(–t)=–δ’(t)為奇函數(shù)目前三十七頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.4階躍函數(shù)和沖激函數(shù)已知f(t),畫(huà)出g(t)=f’(t)和g(2t)求導(dǎo),得g(t)壓縮,得g(2t)目前三十八頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.4階躍函數(shù)和沖激函數(shù)4.復(fù)合函數(shù)形式的沖激函數(shù)(自學(xué))

實(shí)際中有時(shí)會(huì)遇到形如δ[f(t)]的沖激函數(shù),其中f(t)是普通函數(shù)。并且f(t)=0有n個(gè)互不相等的實(shí)根ti

(i=1,2,…,n)ε[f(t)]圖示說(shuō)明:例f(t)=t2–4ε(t2–4)=1–ε(t+2)+ε(t–2)目前三十九頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.4階躍函數(shù)和沖激函數(shù)ε(t2–4)=1–ε(t+2)+ε(t–2)一般地,這表明,δ[f(t)]是位于各ti處,強(qiáng)度為的n個(gè)沖激函數(shù)構(gòu)成的沖激函數(shù)序列。注意:如果f(t)=0有重根,δ[f(t)]無(wú)意義。目前四十頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.4階躍函數(shù)和沖激函數(shù)這兩個(gè)序列是普通序列。(1)單位(樣值)序列δ(k)的定義取樣性質(zhì):f(k)δ(k)=f(0)δ(k)f(k)δ(k–k0)=f(k0)δ(k–k0)例三、序列δ(k)和ε(k)目前四十一頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.4階躍函數(shù)和沖激函數(shù)(2)單位階躍序列ε(k)的定義(3)ε(k)與δ(k)的關(guān)系δ(k)=ε(k)–ε(k–1)或ε(k)=δ(k)+δ(k–1)+…目前四十二頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.5系統(tǒng)的描述1.5系統(tǒng)的描述

描述連續(xù)動(dòng)態(tài)系統(tǒng)的數(shù)學(xué)模型是微分方程,描述離散動(dòng)態(tài)系統(tǒng)的數(shù)學(xué)模型是差分方程。一、連續(xù)系統(tǒng)1.解析描述——建立數(shù)學(xué)模型

圖示RLC電路,以u(píng)S(t)作激勵(lì),以u(píng)C(t)作為響應(yīng),由KVL和VAR列方程,并整理得二階常系數(shù)線性微分方程。目前四十三頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.5系統(tǒng)的描述抽去具有的物理含義,微分方程寫(xiě)成這個(gè)方程也可以描述下面的一個(gè)二階機(jī)械減振系統(tǒng)。其中,k為彈簧常數(shù),M為物體質(zhì)量,C為減振液體的阻尼系數(shù),x為物體偏離其平衡位置的位移,f(t)為初始外力。其運(yùn)動(dòng)方程為

能用相同方程描述的系統(tǒng)稱(chēng)相似系統(tǒng)。目前四十四頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.5系統(tǒng)的描述2.系統(tǒng)的框圖描述上述方程從數(shù)學(xué)角度來(lái)說(shuō)代表了某些運(yùn)算關(guān)系:相乘、微分、相加運(yùn)算。將這些基本運(yùn)算用一些理想部件符號(hào)表示出來(lái)并相互聯(lián)接表征上述方程的運(yùn)算關(guān)系,這樣畫(huà)出的圖稱(chēng)為模擬框圖,簡(jiǎn)稱(chēng)框圖?;静考卧校悍e分器:加法器:數(shù)乘器:積分器的抗干擾性比微分器好目前四十五頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.5系統(tǒng)的描述系統(tǒng)模擬:實(shí)際系統(tǒng)→方程→模擬框圖→實(shí)驗(yàn)室實(shí)現(xiàn)(模擬系統(tǒng))→指導(dǎo)實(shí)際系統(tǒng)設(shè)計(jì)例1:已知y”(t)+ay’(t)+by(t)=f(t),畫(huà)框圖。解:將方程寫(xiě)為y”(t)=f(t)–ay’(t)–by(t)目前四十六頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.5系統(tǒng)的描述例2:已知y”(t)+3y’(t)+2y(t)=4f’(t)+f(t),畫(huà)框圖。解:該方程含f(t)的導(dǎo)數(shù),可引入輔助函數(shù)畫(huà)出框圖。設(shè)輔助函數(shù)x(t)滿(mǎn)足x”(t)+3x’(t)+2x(t)=f(t)可推導(dǎo)出y(t)=4x’(t)+x(t),它滿(mǎn)足原方程。目前四十七頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)例3:已知框圖,寫(xiě)出系統(tǒng)的微分方程。1.5系統(tǒng)的描述設(shè)輔助變量x(t)如圖x(t)x’(t)x”(t)x”(t)=f(t)–2x’(t)–3x(t),即x”(t)+2x’(t)+3x(t)=f(t)y(t)=4x’(t)+3x(t)根據(jù)前面,逆過(guò)程,得y”(t)+2y’(t)+3y(t)=4f’(t)+3f(t)目前四十八頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.5系統(tǒng)的描述二、離散系統(tǒng)1.解析描述——建立差分方程例:某人每月初在銀行存入一定數(shù)量的款,月息為β元/月,求第k個(gè)月初存折上的款數(shù)。設(shè)第k個(gè)月初的款數(shù)為y(k),這個(gè)月初的存款為f(k),上個(gè)月初的款數(shù)為y(k-1),利息為βy(k-1),則

y(k)=y(k-1)+βy(k-1)+f(k)即y(k)-(1+β)y(k-1)=f(k)若設(shè)開(kāi)始存款月為k=0,則有y(0)=f(0)。上述方程就稱(chēng)為y(k)與f(k)之間所滿(mǎn)足的差分方程。所謂差分方程是指由未知輸出序列項(xiàng)與輸入序列項(xiàng)構(gòu)成的方程。未知序列項(xiàng)變量最高序號(hào)與最低序號(hào)的差數(shù),稱(chēng)為差分方程的階數(shù)。上述為一階差分方程。目前四十九頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.5系統(tǒng)的描述由n階差分方程描述的系統(tǒng)稱(chēng)為n階系統(tǒng)。描述LTI系統(tǒng)的是線性常系數(shù)差分方程。2.差分方程的模擬框圖基本部件單元有:數(shù)乘器加法器遲延單元(移位器)目前五十頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.5系統(tǒng)的描述例:已知框圖,寫(xiě)出系統(tǒng)的差分方程。解:設(shè)輔助變量x(k)如圖x(k)x(k-1)x(k-2)即x(k)+2x(k-1)+3x(k-2)=f(k)y(k)=4x(k-1)+5x(k-2)消去x(k),得

y(k)+2y(k-1)+3y(k-2)=4f(k-1)+5f(k-2)x(k)=f(k)–2x(k-1)–3x(k-2)方程←→框圖用變換域方法和梅森公式簡(jiǎn)單,后面討論。目前五十一頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.6系統(tǒng)的性質(zhì)及分類(lèi)1.6系統(tǒng)的性質(zhì)及分類(lèi)一、系統(tǒng)的定義

若干相互作用、相互聯(lián)系的事物按一定規(guī)律組成具有特定功能的整體稱(chēng)為系統(tǒng)。電系統(tǒng)是電子元器件的集合體。電路側(cè)重于局部,系統(tǒng)側(cè)重于全部。電路、系統(tǒng)兩詞通用。二、系統(tǒng)的分類(lèi)及性質(zhì)

可以從多種角度來(lái)觀察、分析研究系統(tǒng)的特征,提出對(duì)系統(tǒng)進(jìn)行分類(lèi)的方法。下面討論幾種常用的分類(lèi)法。目前五十二頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.6系統(tǒng)的性質(zhì)及分類(lèi)1.連續(xù)系統(tǒng)與離散系統(tǒng)

若系統(tǒng)的輸入信號(hào)是連續(xù)信號(hào),系統(tǒng)的輸出信號(hào)也是連續(xù)信號(hào),則稱(chēng)該系統(tǒng)為連續(xù)時(shí)間系統(tǒng),簡(jiǎn)稱(chēng)為連續(xù)系統(tǒng)。

若系統(tǒng)的輸入信號(hào)和輸出信號(hào)均是離散信號(hào),則稱(chēng)該系統(tǒng)為離散時(shí)間系統(tǒng),簡(jiǎn)稱(chēng)為離散系統(tǒng)。2.動(dòng)態(tài)系統(tǒng)與即時(shí)系統(tǒng)

若系統(tǒng)在任一時(shí)刻的響應(yīng)不僅與該時(shí)刻的激勵(lì)有關(guān),而且與它過(guò)去的歷史狀況有關(guān),則稱(chēng)為動(dòng)態(tài)系統(tǒng)或記憶系統(tǒng)。含有記憶元件(電容、電感等)的系統(tǒng)是動(dòng)態(tài)系統(tǒng)。否則稱(chēng)即時(shí)系統(tǒng)或無(wú)記憶系統(tǒng)。3.單輸入單輸出系統(tǒng)與多輸入多輸出系統(tǒng)目前五十三頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.6系統(tǒng)的性質(zhì)及分類(lèi)4.線性系統(tǒng)與非線性系統(tǒng)滿(mǎn)足線性性質(zhì)的系統(tǒng)稱(chēng)為線性系統(tǒng)。(1)線性性質(zhì)系統(tǒng)的激勵(lì)f(·)所引起的響應(yīng)y(·)可簡(jiǎn)記為

y(·)=T[f(·)]線性性質(zhì)包括兩方面:齊次性和可加性。

若系統(tǒng)的激勵(lì)f(·)增大a倍時(shí),其響應(yīng)y(·)也增大a倍,即

T

[af(·)]=aT

[f(·)]則稱(chēng)該系統(tǒng)是齊次的。

若系統(tǒng)對(duì)于激勵(lì)f1(·)與f2(·)之和的響應(yīng)等于各個(gè)激勵(lì)所引起的響應(yīng)之和,即

T

[f1(·)+f2(·)]=T[f1(·)]+T[f2(·)]則稱(chēng)該系統(tǒng)是可加的。目前五十四頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.6系統(tǒng)的性質(zhì)及分類(lèi)若系統(tǒng)既是齊次的又是可加的,則稱(chēng)該系統(tǒng)是線性的,即T[af1(·)+bf2(·)]=aT[f1(·)]+bT[f2(·)](2)動(dòng)態(tài)系統(tǒng)是線性系統(tǒng)的條件

動(dòng)態(tài)系統(tǒng)不僅與激勵(lì){f

(·)}有關(guān),而且與系統(tǒng)的初始狀態(tài){x(0)}有關(guān)。初始狀態(tài)也稱(chēng)“內(nèi)部激勵(lì)”。完全響應(yīng)可寫(xiě)為

y

(·)=T[{f

(·)},{x(0)}]零狀態(tài)響應(yīng)為

yzs(·)=T[{f

(·)},{0}]零輸入響應(yīng)為

yzi(·)=T[{0},{x(0)}]目前五十五頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.6系統(tǒng)的性質(zhì)及分類(lèi)當(dāng)動(dòng)態(tài)系統(tǒng)滿(mǎn)足下列三個(gè)條件時(shí)該系統(tǒng)為線性系統(tǒng):②零狀態(tài)線性:

T[{af

(·)},{0}]=aT[{f

(·)},{0}]T[{f1(t)+f2(t)},{0}]=T[{f1

(·)},{0}]+T[{f2

(·)},{0}]或

T[{af1(t)+bf2(t)},{0}]=aT[{f1

(·)},{0}]+bT[{f2

(·)},{0}]③零輸入線性:

T[{0},{ax(0)}]=aT[{0},{x(0)}]T[{0},{x1(0)+x2(0)}]=T[{0},{x1(0)}]+T[{0},{x2(0)}]或T[{0},{ax1(0)+bx2(0)}]=aT[{0},{x1(0)}]+bT[{0},{x2(0)}]①可分解性:

y

(·)=yzs(·)+yzi(·)=T[{f

(·)},{0}]+T[{0},{x(0)}]目前五十六頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.6系統(tǒng)的性質(zhì)及分類(lèi)例1:判斷下列系統(tǒng)是否為線性系統(tǒng)?(1)y

(t)=3x(0)+2f

(t)+x(0)f

(t)+1

(2)y

(t)=2x(0)+|f

(t)|

(3)y

(t)=x2(0)+2f

(t)解:(1)

yzs(t)=2f

(t)+1,yzi(t)=3x(0)+1顯然,y

(t)≠yzs(t)+yzi(t)不滿(mǎn)足可分解性,故為非線性(2)

yzs(t)=|f

(t)|,yzi(t)=2x(0)

y

(t)=yzs(t)+yzi(t)滿(mǎn)足可分解性;由于T[{af

(t)},{0}]=|af

(t)|≠ayzs(t)不滿(mǎn)足零狀態(tài)線性。故為非線性系統(tǒng)。(3)

yzs(t)=2f

(t),yzi(t)=x2(0),顯然滿(mǎn)足可分解性;由于T[{0},{ax(0)}]=[ax(0)]2≠ayzi(t)不滿(mǎn)足零輸入線性。故為非線性系統(tǒng)。目前五十七頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.6系統(tǒng)的性質(zhì)及分類(lèi)例2:判斷下列系統(tǒng)是否為線性系統(tǒng)?解:y

(t)=yzs(t)+yzi(t),滿(mǎn)足可分解性;T[{af1(t)+bf2(t)},{0}]=aT[{f1(t)},{0}]+bT[{f2(t)},{0}],滿(mǎn)足零狀態(tài)線性;T[{0},{ax1(0)+bx2(0)}]=e-t[ax1(0)+bx2(0)]=ae-tx1(0)+be-tx2(0)=aT[{0},{x1(0)}]+bT[{0},{x2(0)}],滿(mǎn)足零輸入線性;所以,該系統(tǒng)為線性系統(tǒng)。目前五十八頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.6系統(tǒng)的性質(zhì)及分類(lèi)5.時(shí)不變系統(tǒng)與時(shí)變系統(tǒng)滿(mǎn)足時(shí)不變性質(zhì)的系統(tǒng)稱(chēng)為時(shí)不變系統(tǒng)。(1)時(shí)不變性質(zhì)

若系統(tǒng)滿(mǎn)足輸入延遲多少時(shí)間,其零狀態(tài)響應(yīng)也延遲多少時(shí)間,即若

T[{0},f(t)]=yzs(t)則有

T[{0},f(t-

td)]=yzs(t-

td)系統(tǒng)的這種性質(zhì)稱(chēng)為時(shí)不變性(或移位不變性)。目前五十九頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.6系統(tǒng)的性質(zhì)及分類(lèi)例:判斷下列系統(tǒng)是否為時(shí)不變系統(tǒng)?(1)yzs(k)=f

(k)f

(k–1)

(2)yzs(t)=tf

(t)

(3)yzs(t)=f

(–t)解(1)令g

(k)=f(k–kd)T[{0},g

(k)]=g(k)g

(k–1)=f

(k–kd)f

(k–kd–1)而yzs(k–kd)=f

(k–kd)f

(k–kd–1)顯然T[{0},f(k–kd)]=yzs(k–kd)故該系統(tǒng)是時(shí)不變的。

(2)令g

(t)=f(t–td)T[{0},g

(t)]=tg

(t)=tf

(t–td)而yzs(t–td)=(t–td)f

(t–td)顯然T[{0},f(t–td)]≠yzs(t–td)故該系統(tǒng)為時(shí)變系統(tǒng)。目前六十頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)(3)令g

(t)=f(t–td),T[{0},g

(t)]=g

(–t)=f(–t–td)而yzs(t–td)=f

[–(t–td)],顯然

T[{0},f(t–td)]≠yzs(t–td)故該系統(tǒng)為時(shí)變系統(tǒng)。直觀判斷方法:

若f

(·)前出現(xiàn)變系數(shù),或有反轉(zhuǎn)、展縮變換,則系統(tǒng)為時(shí)變系統(tǒng)。

1.6系統(tǒng)的性質(zhì)及分類(lèi)目前六十一頁(yè)\總數(shù)六十六頁(yè)\編于十七點(diǎn)1.6系統(tǒng)的性質(zhì)及分類(lèi)(2)LTI連續(xù)系統(tǒng)的微分特性和積分特性

本課程重點(diǎn)討論線性時(shí)不變系統(tǒng)(LinearTime-Invariant),簡(jiǎn)稱(chēng)LTI系統(tǒng)。①微分特性:若f(t)→yzs(t),則f

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論