版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
4.5三角形的中位線了解三角形中位線的概念了解三角形中位線的性質(zhì)探索三角形中位線定理證明的方法能由線段的中點(diǎn)聯(lián)想到三角形中位線探索三角形中位線性質(zhì)的一些簡單應(yīng)用新知探究4.5三角形的中位線定義:連結(jié)三角形兩邊中點(diǎn)的線段
叫做三角形的中位線任意畫一個△ABC,分別取AB,AC的中點(diǎn)D,E,連結(jié)DE.你還能畫出幾條三角形的中位線?三角形有3條中位線.注意:三角形的中位線和三角形的中線不同新知探究3.3垂徑定理②
3.4圓心角②中位線和中線有什么相同與不同之處?CBAED概念對比CBAD中線DC中位線DE(1)相同之處:都和邊的中點(diǎn)有關(guān),都是線段,都有三條;(2)不同之處:
4.5三角形的中位線三角形中位線,兩個端點(diǎn)都是邊的中點(diǎn);三角形中線,一個端點(diǎn)是邊的中點(diǎn),另一端點(diǎn)是三角形的頂點(diǎn).3.3垂徑定理②
3.4圓心角②新知探究通過觀察,測量等方法,你發(fā)現(xiàn)線段DE有哪些性質(zhì)?觀察發(fā)現(xiàn)DE∥BC,度量發(fā)現(xiàn).三角形的中位線定理:
三角形的中位線平行于第三邊,并且等于第三邊的一半.DE和邊BC關(guān)系:位置關(guān)系:DE∥BC幾何語言:∵DE是△ABC的中位線(或AD=BD,AE=CE),數(shù)量關(guān)系:
4.5三角形的中位線∴DE∥BC,且
(或DE
).3.3垂徑定理②
3.4圓心角②新知探究DE∥BC,已知,如圖,DE是△ABC的中位線.求證:
4.5三角形的中位線3.3垂徑定理②
3.4圓心角②新知探究
4.5三角形的中位線DE∥BC,已知,如圖,DE是△ABC的中位線.求證:3.3垂徑定理②
3.4圓心角②新知探究
4.5三角形的中位線DE∥BC,已知,如圖,DE是△ABC的中位線.求證:3.3垂徑定理②
3.4圓心角②新知探究
4.5三角形的中位線DE∥BC,已知,如圖,DE是△ABC的中位線.求證:EGF當(dāng)堂演練3.3垂徑定理②
3.4圓心角②1.如圖,在△ABC中,D,E,F(xiàn)分別是AB,AC,BC的中點(diǎn).(1)若∠ADE=65°,則∠B=
度,為什么?(2)若BC=8cm,則DE=
cm,為什么?(3)若AC=5cm,BC=6cm,AB=7cm,則△DEF的周長=______cm.(4)若△ABC的周長為24,△DEF的周長是_____.(5)圖中有_____個平行四邊形.(6)若△ABC的面積為24,△DEF的面積是_____.
4.5三角形的中位線6549936當(dāng)堂演練3.3垂徑定理②
3.4圓心角②
4.5三角形的中位線2.如圖,AD是等腰三角形ABC的頂角平分線,BC=10,點(diǎn)E,F(xiàn)分別是AD,AC邊
的中點(diǎn),連結(jié)EF,則EF=
.3.如圖,如圖,△ABC中,N是BC邊上的中點(diǎn),AM平分∠BAC,BM⊥AM于點(diǎn)M,
若AB=8,MN=2,則AC=
.3.3垂徑定理②
3.4圓心角②如圖,在△ABC中,D,E,F(xiàn)分別是AB,AC,BC的中點(diǎn).(1)若∠ADE=65°,則∠B=
度,為什么?(2)若BC=8cm,則DE=
cm,為什么?(3)若AC=5cm,BC=6cm,AB=7cm,則△DEF的周長=______cm.(4)若△ABC的周長為24,△DEF的周長是_____.(5)圖中有_____個平行四邊形.(6)若△ABC的面積為24,△DEF的面積是_____.
4.5三角形的中位線6549936知識回顧
三角形的中位線平行于第三邊.
三角形的中位線等于第三邊的一半.3.3垂徑定理②
3.4圓心角②
4.5三角形的中位線例題解析
已知:如圖,在四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn).
求證:四邊形EFGH是平行四邊形.
連結(jié)AC.
∵EF是△ABC的中位線,∴.(三角形的中位線等于第三邊的一半)
∴所以四邊形EFGH是平行四邊形.
(兩組對邊分別相等的四邊形是平行四邊形)
證明
你還有不一樣的方法嗎?
4.5三角形的中位線例題解析
已知:如圖,在四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn).
求證:四邊形EFGH是平行四邊形.3.3垂徑定理②
3.4圓心角②
4.5三角形的中位線例題解析
已知:如圖,在四邊形ABCD中,E,G,分別是AB,CD,的中點(diǎn).
若AD=BC,連結(jié)BD,P是BD的中點(diǎn),
連結(jié)EP,GP,若∠PEG=15°,則
∠PGE=
度.
分析
由已知可得EP與GP分別是△ABP與△BCD的中位線,∴EP,
PG.又∵AD=BC∴EP=PG,∴∠PGE=
∠PEG=15°.3.3垂徑定理②
3.4圓心角②
4.5三角形的中位線例題解析已知:如圖,在四邊形ABCD中,F(xiàn),G,H分別是BC,CD,DA的中點(diǎn).
連結(jié)AC,BD交于點(diǎn)O,若AC=BD=8,
且∠COD=60°,則
FH=
.
123.3垂徑定理②
3.4圓心角②
4.5三角形的中位線例題解析
已知:如圖,在四邊形ABCD中,F(xiàn),G,H分別是BC,CD,DA的中點(diǎn).
若AC=BD,F(xiàn)H交AC,BD于點(diǎn)M,N.
求證:OM=ON.
12當(dāng)堂演練3.3垂徑定理②
3.4圓心角②
4.5三角形的中位線1.如圖,在四邊形ABCD中,E,F(xiàn),G,H分別是AD,BD,BC,AC上的中點(diǎn),
AB=5,CD=7.求四邊形EFGH的周長.當(dāng)堂演練3.3垂徑定理②
3.4圓心角②
4.5三角形的中位線2.如圖,點(diǎn)O是△ABC內(nèi)一點(diǎn),連結(jié)OB,OC,線段AB,OB,OC,AC的中點(diǎn)
分別為D,E,F(xiàn),G.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版企業(yè)信息工程系統(tǒng)性能評估委托合同3篇
- 2025版學(xué)校學(xué)生食堂餐具清洗消毒服務(wù)合同2篇
- 2025版工業(yè)產(chǎn)品設(shè)計(jì)勞務(wù)分包合同示范文本3篇
- 3簡歷篩選技巧
- 2025版新型木工機(jī)械設(shè)備租賃服務(wù)合同范本4篇
- 全新神州2025年度車輛租賃合同6篇
- 互聯(lián)網(wǎng)平臺未來發(fā)展趨勢與挑戰(zhàn)考核試卷
- 2025版建筑施工安全環(huán)保綜合服務(wù)合同2篇
- 2025版嬰幼兒輔食委托加工生產(chǎn)及質(zhì)量控制合同3篇
- 2025版企業(yè)商標(biāo)注冊委托代理服務(wù)合同2篇
- 數(shù)學(xué)-山東省2025年1月濟(jì)南市高三期末學(xué)習(xí)質(zhì)量檢測濟(jì)南期末試題和答案
- 中儲糧黑龍江分公司社招2025年學(xué)習(xí)資料
- 湖南省長沙市2024-2025學(xué)年高一數(shù)學(xué)上學(xué)期期末考試試卷
- 船舶行業(yè)維修保養(yǎng)合同
- 2024年林地使用權(quán)轉(zhuǎn)讓協(xié)議書
- 春節(jié)期間化工企業(yè)安全生產(chǎn)注意安全生產(chǎn)
- 數(shù)字的秘密生活:最有趣的50個數(shù)學(xué)故事
- 移動商務(wù)內(nèi)容運(yùn)營(吳洪貴)任務(wù)一 移動商務(wù)內(nèi)容運(yùn)營關(guān)鍵要素分解
- 基于ADAMS的汽車懸架系統(tǒng)建模與優(yōu)化
- 當(dāng)前中國個人極端暴力犯罪個案研究
- 中國象棋比賽規(guī)則
評論
0/150
提交評論