2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.自1993年起,聯(lián)合國(guó)將每年的3月11日定為“世界水日”,宗旨是喚起公眾的節(jié)水意識(shí),加強(qiáng)水資源保護(hù).某校在開展“節(jié)約每一滴水”的活動(dòng)中,從初三年級(jí)隨機(jī)選出10名學(xué)生統(tǒng)計(jì)出各自家庭一個(gè)月的節(jié)約用水量,有關(guān)數(shù)據(jù)整理如下表.節(jié)約用水量(單位:噸)11.11.411.5家庭數(shù)46531這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.1.1,1.1; B.1.4,1.1; C.1.3,1.4; D.1.3,1.1.2.如圖,將甲、乙、丙、丁四個(gè)小正方形中的一個(gè)剪掉,使余下的部分不能圍成一個(gè)正方體,剪掉的這個(gè)小正方形是A.甲 B.乙C.丙 D.丁3.下列方程中,沒有實(shí)數(shù)根的是()A. B.C. D.4.正方形ABCD和正方形BPQR的面積分別為16、25,它們重疊的情形如圖所示,其中R點(diǎn)在AD上,CD與QR相交于S點(diǎn),則四邊形RBCS的面積為()A.8 B. C. D.5.如圖,三角形紙片ABC,AB=10cm,BC=7cm,AC=6cm,沿過點(diǎn)B的直線折疊這個(gè)三角形,使頂點(diǎn)C落在AB邊上的點(diǎn)E處,折痕為BD,則△AED的周長(zhǎng)為()A.9cm B.13cm C.16cm D.10cm6.正三角形繞其中心旋轉(zhuǎn)一定角度后,與自身重合,旋轉(zhuǎn)角至少為()A.30° B.60° C.120° D.180°7.如圖,將△ABE向右平移2cm得到△DCF,如果△ABE的周長(zhǎng)是16cm,那么四邊形ABFD的周長(zhǎng)是(
)A.16cm B.18cm C.20cm D.21cm8.下列圖形中,是中心對(duì)稱圖形,但不是軸對(duì)稱圖形的是()A. B.C. D.9.小明乘出租車去體育場(chǎng),有兩條路線可供選擇:路線一的全程是25千米,但交通比較擁堵,路線二的全程是30千米,平均車速比走路線一時(shí)的平均車速能提高80%,因此能比走路線一少用10分鐘到達(dá).若設(shè)走路線一時(shí)的平均速度為x千米/小時(shí),根據(jù)題意,得A.25x-C.30(1+80%)x-10.長(zhǎng)春市奧林匹克公園即將于2018年年底建成,它的總投資額約為2500000000元,2500000000這個(gè)數(shù)用科學(xué)記數(shù)法表示為()A.0.25×1010B.2.5×1010C.2.5×109D.25×108二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如果點(diǎn)P1(2,y1)、P2(3,y2)在拋物線上,那么y1______y2.(填“>”,“<”或“=”).12.如圖,D,E分別是△ABC的邊AB、BC上的點(diǎn),且DE∥AC,AE、CD相交于點(diǎn)O,若S△DOE:S△COA=1:16,則S△BDE與S△CDE的比是___________.13.小明擲一枚均勻的骰子,骰子的六個(gè)面上分別刻有1,2,3,4,5,6點(diǎn),得到的點(diǎn)數(shù)為奇數(shù)的概率是.14.如圖所示,某辦公大樓正前力有一根高度是15米的旗桿ED,從辦公樓頂點(diǎn)A測(cè)得族桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底端C的距離DC是20米,梯坎坡長(zhǎng)BC是13米,梯坎坡度i=1:2.4,則大樓AB的高度的為_____米.15.將兩塊全等的含30°角的三角尺如圖1擺放在一起,設(shè)較短直角邊為1,如圖2,將Rt△BCD沿射線BD方向平移,在平移的過程中,當(dāng)點(diǎn)B的移動(dòng)距離為時(shí),四邊ABC1D1為矩形;當(dāng)點(diǎn)B的移動(dòng)距離為時(shí),四邊形ABC1D1為菱形.16.如圖AB是直徑,C、D、E為圓周上的點(diǎn),則______.三、解答題(共8題,共72分)17.(8分)計(jì)算:(1)(2)2﹣|﹣4|+3﹣1×6+20;(2).18.(8分)校園空地上有一面墻,長(zhǎng)度為20m,用長(zhǎng)為32m的籬笆和這面墻圍成一個(gè)矩形花圃,如圖所示.能圍成面積是126m2的矩形花圃嗎?若能,請(qǐng)舉例說明;若不能,請(qǐng)說明理由.若籬笆再增加4m,圍成的矩形花圃面積能達(dá)到170m2嗎?請(qǐng)說明理由.19.(8分)列方程解應(yīng)用題八年級(jí)學(xué)生去距學(xué)校10km的博物館參觀,一部分學(xué)生騎自行車先走,過了20min后,其余學(xué)生乘汽車出發(fā),結(jié)果他們同時(shí)到達(dá).已知汽車的速度是騎車學(xué)生速度的2倍,求騎車學(xué)生的速度.20.(8分)在“傳箴言”活動(dòng)中,某班團(tuán)支部對(duì)該班全體團(tuán)員在一個(gè)月內(nèi)所發(fā)箴言條數(shù)的情況進(jìn)行了統(tǒng)計(jì),并制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖:求該班團(tuán)員在這一個(gè)月內(nèi)所發(fā)箴言的平均條數(shù)是多少?并將該條形統(tǒng)計(jì)圖補(bǔ)充完整;如果發(fā)了3條箴言的同學(xué)中有兩位男同學(xué),發(fā)了4條箴言的同學(xué)中有三位女同學(xué).現(xiàn)要從發(fā)了3條箴言和4條箴言的同學(xué)中分別選出一位參加該校團(tuán)委組織的“箴言”活動(dòng)總結(jié)會(huì),請(qǐng)你用列表法或樹狀圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.21.(8分)如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點(diǎn)A(﹣,2),B(n,﹣1).求直線與雙曲線的解析式.點(diǎn)P在x軸上,如果S△ABP=3,求點(diǎn)P的坐標(biāo).22.(10分)如圖,AB是半圓O的直徑,D為弦BC的中點(diǎn),延長(zhǎng)OD交弧BC于點(diǎn)E,點(diǎn)F為OD的延長(zhǎng)線上一點(diǎn)且滿足∠OBC=∠OFC,求證:CF為⊙O的切線;若四邊形ACFD是平行四邊形,求sin∠BAD的值.23.(12分)如圖,已知△ABC中,AB=BC=5,tan∠ABC=.求邊AC的長(zhǎng);設(shè)邊BC的垂直平分線與邊AB的交點(diǎn)為D,求的值.24.某市扶貧辦在精準(zhǔn)扶貧工作中,組織30輛汽車裝運(yùn)花椒、核桃、甘藍(lán)向外地銷售.按計(jì)劃30輛車都要裝運(yùn),每輛汽車只能裝運(yùn)同一種產(chǎn)品,且必須裝滿,根據(jù)下表提供的信息,解答以下問題:產(chǎn)品名稱核桃花椒甘藍(lán)每輛汽車運(yùn)載量(噸)1064每噸土特產(chǎn)利潤(rùn)(萬元)0.70.80.5若裝運(yùn)核桃的汽車為x輛,裝運(yùn)甘藍(lán)的車輛數(shù)是裝運(yùn)核桃車輛數(shù)的2倍多1,假設(shè)30輛車裝運(yùn)的三種產(chǎn)品的總利潤(rùn)為y萬元.(1)求y與x之間的函數(shù)關(guān)系式;(2)若裝花椒的汽車不超過8輛,求總利潤(rùn)最大時(shí),裝運(yùn)各種產(chǎn)品的車輛數(shù)及總利潤(rùn)最大值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】分析:中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個(gè)數(shù)或兩個(gè)數(shù)的平均數(shù)為中位數(shù),眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個(gè).詳解:這組數(shù)據(jù)的中位數(shù)是;這組數(shù)據(jù)的眾數(shù)是1.1.故選D.點(diǎn)睛:本題屬于基礎(chǔ)題,考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力,要明確定義,一些學(xué)生往往對(duì)這個(gè)概念掌握不清楚,計(jì)算方法不明確而誤選其它選項(xiàng),注意找中位數(shù)的時(shí)候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個(gè)來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個(gè),則正中間的數(shù)字即為所求,如果是偶數(shù)個(gè)則找中間兩位數(shù)的平均數(shù).2、D【解析】解:將如圖所示的圖形剪去一個(gè)小正方形,使余下的部分不能圍成一個(gè)正方體,編號(hào)為甲乙丙丁的小正方形中剪去的是?。蔬xD.3、B【解析】
分別計(jì)算四個(gè)方程的判別式的值,然后根據(jù)判別式的意義確定正確選項(xiàng).【詳解】解:A、△=(-2)2-4×(-3)=16>0,方程有兩個(gè)不相等的兩個(gè)實(shí)數(shù)根,所以A選項(xiàng)錯(cuò)誤;
B、△=(-2)2-4×3=-8<0,方程沒有實(shí)數(shù)根,所以B選項(xiàng)正確;
C、△=(-2)2-4×1=0,方程有兩個(gè)相等的兩個(gè)實(shí)數(shù)根,所以C選項(xiàng)錯(cuò)誤;
D、△=(-2)2-4×(-1)=8>0,方程有兩個(gè)不相等的兩個(gè)實(shí)數(shù)根,所以D選項(xiàng)錯(cuò)誤.
故選:B.【點(diǎn)睛】本題考查根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:當(dāng)△>0根時(shí),方程有兩個(gè)不相等的兩個(gè)實(shí)數(shù)根;當(dāng)△=0時(shí),方程有兩個(gè)相等的兩個(gè)實(shí)數(shù)根;當(dāng)△<0時(shí),方程無實(shí)數(shù)根.4、D【解析】
根據(jù)正方形的邊長(zhǎng),根據(jù)勾股定理求出AR,求出△ABR∽△DRS,求出DS,根據(jù)面積公式求出即可.【詳解】∵正方形ABCD的面積為16,正方形BPQR面積為25,∴正方形ABCD的邊長(zhǎng)為4,正方形BPQR的邊長(zhǎng)為5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四邊形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴,∴,∴DS=,∴∴陰影部分的面積S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,故選:D.【點(diǎn)睛】本題考查了正方形的性質(zhì),相似三角形的性質(zhì)和判定,能求出△ABR和△RDS的面積是解此題的關(guān)鍵.5、A【解析】試題分析:由折疊的性質(zhì)知,CD=DE,BC=BE.易求AE及△AED的周長(zhǎng).解:由折疊的性質(zhì)知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周長(zhǎng)=AD+DE+AE=AC+AE=6+3=9(cm).故選A.點(diǎn)評(píng):本題利用了折疊的性質(zhì):折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,根據(jù)軸對(duì)稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.6、C【解析】
求出正三角形的中心角即可得解【詳解】正三角形繞其中心旋轉(zhuǎn)一定角度后,與自身重合,旋轉(zhuǎn)角至少為120°,故選C.【點(diǎn)睛】本題考查旋轉(zhuǎn)對(duì)稱圖形的概念:把一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對(duì)稱圖形,這個(gè)定點(diǎn)叫做旋轉(zhuǎn)對(duì)稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角,掌握正多邊形的中心角的求解是解題的關(guān)鍵7、C【解析】試題分析:已知,△ABE向右平移2cm得到△DCF,根據(jù)平移的性質(zhì)得到EF=AD=2cm,AE=DF,又因△ABE的周長(zhǎng)為16cm,所以AB+BC+AC=16cm,則四邊形ABFD的周長(zhǎng)=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案選C.考點(diǎn):平移的性質(zhì).8、A【解析】分析:根據(jù)中心對(duì)稱圖形的定義旋轉(zhuǎn)180°后能夠與原圖形完全重合即是中心對(duì)稱圖形,以及軸對(duì)稱圖形的定義:如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形叫做軸對(duì)稱圖形,這條直線叫做對(duì)稱軸,即可判斷出答案.詳解:A、此圖形是中心對(duì)稱圖形,不是軸對(duì)稱圖形,故此選項(xiàng)正確;B、此圖形不是中心對(duì)稱圖形,是軸對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;C、此圖形是中心對(duì)稱圖形,也是軸對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;D、此圖形不是中心對(duì)稱圖形,是軸對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤.故選A.點(diǎn)睛:此題主要考查了中心對(duì)稱圖形與軸對(duì)稱的定義,關(guān)鍵是找出圖形的對(duì)稱中心與對(duì)稱軸.9、A【解析】若設(shè)走路線一時(shí)的平均速度為x千米/小時(shí),根據(jù)路線一的全程是25千米,但交通比較擁堵,路線二的全程是30千米,平均車速比走路線一時(shí)的平均車速能提高80%,因此能比走路線一少用10分鐘到達(dá)可列出方程.解:設(shè)走路線一時(shí)的平均速度為x千米/小時(shí),25故選A.10、C【解析】【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值大于10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值小于1時(shí),n是負(fù)數(shù).【詳解】2500000000的小數(shù)點(diǎn)向左移動(dòng)9位得到2.5,所以2500000000用科學(xué)記數(shù)表示為:2.5×1.故選C.【點(diǎn)睛】本題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、>【解析】分析:首先求得拋物線y=﹣x2+2x的對(duì)稱軸是x=1,利用二次函數(shù)的性質(zhì),點(diǎn)M、N在對(duì)稱軸的右側(cè),y隨著x的增大而減小,得出答案即可.詳解:拋物線y=﹣x2+2x的對(duì)稱軸是x=﹣=1.∵a=﹣1<0,拋物線開口向下,1<2<3,∴y1>y2.故答案為>.點(diǎn)睛:本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,二次函數(shù)的性質(zhì),求得對(duì)稱軸,掌握二次函數(shù)圖象的性質(zhì)解決問題.12、1:3【解析】根據(jù)相似三角形的判定,由DE∥AC,可知△DOE∽△COA,△BDE∽△BCA,然后根據(jù)相似三角形的面積比等于相似比的平方,可由,求得DE:AC=1:4,即BE:BC=1:4,因此可得BE:EC=1:3,最后根據(jù)同高不同底的三角形的面積可知與的比是1:3.故答案為1:3.13、.【解析】
根據(jù)題意可知,擲一次骰子有6個(gè)可能結(jié)果,而點(diǎn)數(shù)為奇數(shù)的結(jié)果有3個(gè),所以點(diǎn)數(shù)為奇數(shù)的概率為.考點(diǎn):概率公式.14、42【解析】
延長(zhǎng)AB交DC于H,作EG⊥AB于G,則GH=DE=15米,EG=DH,設(shè)BH=x米,則CH=2.4x米,在Rt△BCH中,BC=13米,由勾股定理得出方程,解方程求出BH=5米,CH=12米,得出BG、EG的長(zhǎng)度,證明△AEG是等腰直角三角形,得出AG=EG=12+20=32(米),即可得出大樓AB的高度.【詳解】延長(zhǎng)AB交DC于H,作EG⊥AB于G,如圖所示:
則GH=DE=15米,EG=DH,
∵梯坎坡度i=1:2.4,
∴BH:CH=1:2.4,
設(shè)BH=x米,則CH=2.4x米,
在Rt△BCH中,BC=13米,
由勾股定理得:x2+(2.4x)2=132,
解得:x=5,
∴BH=5米,CH=12米,
∴BG=GH-BH=15-5=10(米),EG=DH=CH+CD=12+20=32(米),
∵∠α=45°,
∴∠EAG=90°-45°=45°,
∴△AEG是等腰直角三角形,
∴AG=EG=32(米),
∴AB=AG+BG=32+10=42(米);
故答案為42【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用-坡度、俯角問題;通過作輔助線運(yùn)用勾股定理求出BH,得出EG是解決問題的關(guān)鍵.15、,.【解析】試題分析:當(dāng)點(diǎn)B的移動(dòng)距離為時(shí),∠C1BB1=60°,則∠ABC1=90°,根據(jù)有一直角的平行四邊形是矩形,可判定四邊形ABC1D1為矩形;當(dāng)點(diǎn)B的移動(dòng)距離為時(shí),D、B1兩點(diǎn)重合,根據(jù)對(duì)角線互相垂直平分的四邊形是菱形,可判定四邊形ABC1D1為菱形.試題解析:如圖:當(dāng)四邊形ABC1D是矩形時(shí),∠B1BC1=90°﹣30°=60°,∵B1C1=1,∴BB1=,當(dāng)點(diǎn)B的移動(dòng)距離為時(shí),四邊形ABC1D1為矩形;當(dāng)四邊形ABC1D是菱形時(shí),∠ABD1=∠C1BD1=30°,∵B1C1=1,∴BB1=,當(dāng)點(diǎn)B的移動(dòng)距離為時(shí),四邊形ABC1D1為菱形.考點(diǎn):1.菱形的判定;2.矩形的判定;3.平移的性質(zhì).16、90°【解析】
連接OE,根據(jù)圓周角定理即可求出答案.【詳解】解:連接OE,
根據(jù)圓周角定理可知:
∠C=∠AOE,∠D=∠BOE,
則∠C+∠D=(∠AOE+∠BOE)=90°,
故答案為:90°.【點(diǎn)睛】本題主要考查了圓周角定理,解題要掌握在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.三、解答題(共8題,共72分)17、(1)1;(2).【解析】
(1)先計(jì)算乘方、絕對(duì)值、負(fù)整數(shù)指數(shù)冪和零指數(shù)冪,再計(jì)算乘法,最后計(jì)算加減運(yùn)算可得;(2)先將分子、分母因式分解,再計(jì)算乘法,最后計(jì)算減法即可得.【詳解】(1)原式=8-4+×6+1=8-4+2+1=1.(2)原式===.【點(diǎn)睛】本題主要考查實(shí)數(shù)和分式的混合運(yùn)算,解題的關(guān)鍵是掌握絕對(duì)值性質(zhì)、負(fù)整數(shù)指數(shù)冪、零指數(shù)冪及分式混合運(yùn)算順序和運(yùn)算法則.18、(1)長(zhǎng)為18米、寬為7米或長(zhǎng)為14米、寬為9米;(1)若籬笆再增加4m,圍成的矩形花圃面積不能達(dá)到172m1.【解析】
(1)假設(shè)能,設(shè)AB的長(zhǎng)度為x米,則BC的長(zhǎng)度為(31﹣1x)米,再根據(jù)矩形面積公式列方程求解即可得到答案.(1)假設(shè)能,設(shè)AB的長(zhǎng)度為y米,則BC的長(zhǎng)度為(36﹣1y)米,再根據(jù)矩形面積公式列方程,求得方程無解,即假設(shè)不成立.【詳解】(1)假設(shè)能,設(shè)AB的長(zhǎng)度為x米,則BC的長(zhǎng)度為(31﹣1x)米,根據(jù)題意得:x(31﹣1x)=116,解得:x1=7,x1=9,∴31﹣1x=18或31﹣1x=14,∴假設(shè)成立,即長(zhǎng)為18米、寬為7米或長(zhǎng)為14米、寬為9米.(1)假設(shè)能,設(shè)AB的長(zhǎng)度為y米,則BC的長(zhǎng)度為(36﹣1y)米,根據(jù)題意得:y(36﹣1y)=172,整理得:y1﹣18y+85=2.∵△=(﹣18)1﹣4×1×85=﹣16<2,∴該方程無解,∴假設(shè)不成立,即若籬笆再增加4m,圍成的矩形花圃面積不能達(dá)到172m1.19、15【解析】試題分析:設(shè)騎車學(xué)生的速度為,利用時(shí)間關(guān)系列方程解應(yīng)用題,一定要檢驗(yàn).試題解析:解:設(shè)騎車學(xué)生的速度為,由題意得,解得.經(jīng)檢驗(yàn)是原方程的解.答:騎車學(xué)生的速度為15.20、(1)3,補(bǔ)圖詳見解析;(2)【解析】
(1)總?cè)藬?shù)=3÷它所占全體團(tuán)員的百分比;發(fā)4條的人數(shù)=總?cè)藬?shù)-其余人數(shù)(2)列舉出所有情況,看恰好是一位男同學(xué)和一位女同學(xué)占總情況的多少即可【詳解】由扇形圖可以看到發(fā)箴言三條的有3名學(xué)生且占,故該班團(tuán)員人數(shù)為:(人),則發(fā)4條箴言的人數(shù)為:(人),所以本月該班團(tuán)員所發(fā)的箴言共(條),則平均所發(fā)箴言的條數(shù)是:(條).(2)畫樹形圖如下:由樹形圖可得,所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率為.【點(diǎn)睛】此題考查扇形統(tǒng)計(jì)圖,條形統(tǒng)計(jì)圖,列表法與樹狀圖法和扇形統(tǒng)計(jì)圖,看懂圖中數(shù)據(jù)是解題關(guān)鍵21、(1)y=﹣2x+1;(2)點(diǎn)P的坐標(biāo)為(﹣,0)或(,0).【解析】
(1)把A的坐標(biāo)代入可求出m,即可求出反比例函數(shù)解析式,把B點(diǎn)的坐標(biāo)代入反比例函數(shù)解析式,即可求出n,把A,B的坐標(biāo)代入一次函數(shù)解析式即可求出一次函數(shù)解析式;(2)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)C的坐標(biāo),設(shè)點(diǎn)P的坐標(biāo)為(x,0),根據(jù)三角形的面積公式結(jié)合S△ABP=3,即可得出,解之即可得出結(jié)論.【詳解】(1)∵雙曲線y=(m≠0)經(jīng)過點(diǎn)A(﹣,2),∴m=﹣1.∴雙曲線的表達(dá)式為y=﹣.∵點(diǎn)B(n,﹣1)在雙曲線y=﹣上,∴點(diǎn)B的坐標(biāo)為(1,﹣1).∵直線y=kx+b經(jīng)過點(diǎn)A(﹣,2),B(1,﹣1),∴,解得∴直線的表達(dá)式為y=﹣2x+1;(2)當(dāng)y=﹣2x+1=0時(shí),x=,∴點(diǎn)C(,0).設(shè)點(diǎn)P的坐標(biāo)為(x,0),∵S△ABP=3,A(﹣,2),B(1,﹣1),∴×3|x﹣|=3,即|x﹣|=2,解得:x1=﹣,x2=.∴點(diǎn)P的坐標(biāo)為(﹣,0)或(,0).【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題、一次(反比例)函數(shù)圖象上點(diǎn)的坐標(biāo)特征、待定系數(shù)法求一次函數(shù)、反比例函數(shù)的解析式以及三角形的面積,解題的關(guān)鍵是:(1)根據(jù)點(diǎn)的坐標(biāo)利用待定系數(shù)法求出函數(shù)的解析式;(2)根據(jù)三角形的面積公式以及S△ABP=3,得出.22、(1)見解析;(2).【解析】
(1)連接OC,根據(jù)等腰三角形的性質(zhì)得到∠OCB=∠B,∠OCB=∠F,根據(jù)垂徑定理得到OF⊥BC,根據(jù)余角的性質(zhì)得到∠OCF=90°,于是得到結(jié)論;
(2)過D作DH⊥AB于H,根據(jù)三角形的中位線的想知道的OD=AC,根據(jù)平行四邊形的性質(zhì)得到DF=AC,設(shè)OD=x,得到AC=DF=2x,根據(jù)射影定理得到CD=x,求得BD=x,根據(jù)勾股定理得到AD=x,于是得到結(jié)論.【詳解】解:(1)連接OC,
∵OC=OB,
∴∠OCB=∠B,
∵∠B=∠F,
∴∠OCB=∠F,
∵D為BC的中點(diǎn),
∴OF⊥BC,
∴∠F+∠FCD=90°,
∴∠OCB+∠FCD=90°,
∴∠OCF=90°,
∴CF為⊙O的切線;
(2)過D作DH⊥AB于H,
∵AO=OB,CD=DB,
∴OD=AC,
∵四邊形ACFD是平行四邊形,
∴DF=AC,
設(shè)OD=x,
∴AC=DF=2x,
∵∠OCF=90°,CD⊥OF,
∴CD2=OD?DF=2x2,
∴CD=x,
∴BD=x,
∴AD=x,
∵OD=x,BD=x,
∴OB=x,
∴DH=x,
∴sin∠BAD==.【點(diǎn)睛】本題考查了切線的判定和性質(zhì),
評(píng)論
0/150
提交評(píng)論