廣西壯族自治區(qū)崇左市龍州縣2022-2023學年初三中考最后沖刺數(shù)學試題含解析_第1頁
廣西壯族自治區(qū)崇左市龍州縣2022-2023學年初三中考最后沖刺數(shù)學試題含解析_第2頁
廣西壯族自治區(qū)崇左市龍州縣2022-2023學年初三中考最后沖刺數(shù)學試題含解析_第3頁
廣西壯族自治區(qū)崇左市龍州縣2022-2023學年初三中考最后沖刺數(shù)學試題含解析_第4頁
廣西壯族自治區(qū)崇左市龍州縣2022-2023學年初三中考最后沖刺數(shù)學試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

廣西壯族自治區(qū)崇左市龍州縣2022-2023學年初三中考最后沖刺數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.某商場試銷一種新款襯衫,一周內(nèi)售出型號記錄情況如表所示:型號(厘米)383940414243數(shù)量(件)25303650288商場經(jīng)理要了解哪種型號最暢銷,則上述數(shù)據(jù)的統(tǒng)計量中,對商場經(jīng)理來說最有意義的是()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差2.關于x的方程x2﹣3x+k=0的一個根是2,則常數(shù)k的值為()A.1 B.2 C.﹣1 D.﹣23.如圖所示,在平面直角坐標系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點B順時針旋轉(zhuǎn)180°,得到△BP2C;把△BP2C繞點C順時針旋轉(zhuǎn)180°,得到△CP3D,依此類推,則旋轉(zhuǎn)第2017次后,得到的等腰直角三角形的直角頂點P2018的坐標為()A.(4030,1) B.(4029,﹣1)C.(4033,1) D.(4035,﹣1)4.如圖,在中,點D、E、F分別在邊、、上,且,.下列四種說法:①四邊形是平行四邊形;②如果,那么四邊形是矩形;③如果平分,那么四邊形是菱形;④如果且,那么四邊形是菱形.其中,正確的有()個A.1 B.2 C.3 D.45.數(shù)據(jù)”1,2,1,3,1”的眾數(shù)是()A.1B.1.5C.1.6D.36.如圖,等腰三角形ABC底邊BC的長為4cm,面積為12cm2,腰AB的垂直平分線EF交AB于點E,交AC于點F,若D為BC邊上的中點,M為線段EF上一點,則△BDM的周長最小值為()A.5cm B.6cm C.8cm D.10cm7.下列圖形不是正方體展開圖的是()A. B.C. D.8.反比例函數(shù)y=的圖象如圖所示,以下結(jié)論:①常數(shù)m<﹣1;②在每個象限內(nèi),y隨x的增大而增大;③若點A(﹣1,h),B(2,k)在圖象上,則h<k;④若點P(x,y)在上,則點P′(﹣x,﹣y)也在圖象.其中正確結(jié)論的個數(shù)是()A.1 B.2 C.3 D.49.一個盒子內(nèi)裝有大小、形狀相同的四個球,其中紅球1個、綠球1個、白球2個,小明摸出一個球不放回,再摸出一個球,則兩次都摸到白球的概率是()A. B. C. D.10.如圖,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,則DE的長為()A.6 B.8 C.10 D.12二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,將一個長方形紙條折成如圖的形狀,若已知∠2=55°,則∠1=____.12.甲、乙兩點在邊長為100m的正方形ABCD上按順時針方向運動,甲的速度為5m/秒,乙的速度為10m/秒,甲從A點出發(fā),乙從CD邊的中點出發(fā),則經(jīng)過__秒,甲乙兩點第一次在同一邊上.13.將直尺和直角三角尺按如圖方式擺放.若,,則________.14.當a,b互為相反數(shù),則代數(shù)式a2+ab﹣2的值為_____.15.如圖,已知⊙P的半徑為2,圓心P在拋物線y=x2﹣1上運動,當⊙P與x軸相切時,圓心P的坐標為_____.16.如圖,已知點A(a,b),0是原點,OA=OA1,OA⊥OA1,則點A1的坐標是.三、解答題(共8題,共72分)17.(8分)如今很多初中生購買飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此數(shù)學興趣小組對本班同學一天飲用飲品的情況進行了調(diào)查,大致可分為四種:A:自帶白開水;B:瓶裝礦泉水;C:碳酸飲料;D:非碳酸飲料.根據(jù)統(tǒng)計結(jié)果繪制如下兩個統(tǒng)計圖(如圖),根據(jù)統(tǒng)計圖提供的信息,解答下列問題:(1)請你補全條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,求“碳酸飲料”所在的扇形的圓心角的度數(shù);(3)為了養(yǎng)成良好的生活習慣,班主任決定在自帶白開水的5名同學(男生2人,女生3人)中隨機抽取2名同學擔任生活監(jiān)督員,請用列表法或樹狀圖法求出恰好抽到一男一女的概率.18.(8分)解方程:=1.19.(8分)已知AC,EC分別是四邊形ABCD和EFCG的對角線,直線AE與直線BF交于點H(1)觀察猜想如圖1,當四邊形ABCD和EFCG均為正方形時,線段AE和BF的數(shù)量關系是;∠AHB=.(2)探究證明如圖2,當四邊形ABCD和FFCG均為矩形,且∠ACB=∠ECF=30°時,(1)中的結(jié)論是否仍然成立,并說明理由.(3)拓展延伸在(2)的條件下,若BC=9,F(xiàn)C=6,將矩形EFCG繞點C旋轉(zhuǎn),在整個旋轉(zhuǎn)過程中,當A、E、F三點共線時,請直接寫出點B到直線AE的距離.20.(8分)如圖,在大樓AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高為DE,在斜坡下的點C處測得樓頂B的仰角為64°,在斜坡上的點D處測得樓頂B的仰角為45°,其中A、C、E在同一直線上.求斜坡CD的高度DE;求大樓AB的高度;(參考數(shù)據(jù):sin64°≈0.9,tan64°≈2).21.(8分)如圖,已知在△ABC中,AB=AC=5,cosB=,P是邊AB上一點,以P為圓心,PB為半徑的⊙P與邊BC的另一個交點為D,聯(lián)結(jié)PD、AD.(1)求△ABC的面積;(2)設PB=x,△APD的面積為y,求y關于x的函數(shù)關系式,并寫出定義域;(3)如果△APD是直角三角形,求PB的長.22.(10分)某中學為了考察九年級學生的中考體育測試成績(滿分30分),隨機抽查了40名學生的成績(單位:分),得到如下的統(tǒng)計圖①和圖②.請根據(jù)相關信息,解答下列問題:(1)圖中m的值為_______________.(2)求這40個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù):(3)根據(jù)樣本數(shù)據(jù),估計該中學九年級2000名學生中,體育測試成績得滿分的大約有多少名學生。23.(12分)如圖,我們把一個半圓和拋物線的一部分圍成的封閉圖形稱為“果圓”,已知分別為“果圓”與坐標軸的交點,直線與“果圓”中的拋物線交于兩點(1)求“果圓”中拋物線的解析式,并直接寫出“果圓”被軸截得的線段的長;(2)如圖,為直線下方“果圓”上一點,連接,設與交于,的面積記為,的面積即為,求的最小值(3)“果圓”上是否存在點,使,如果存在,直接寫出點坐標,如果不存在,請說明理由24.“校園手機”現(xiàn)象越來越受到社會的關注.“寒假”期間,某校小記者隨機調(diào)查了某地區(qū)若干名學生和家長對中學生帶手機現(xiàn)象的看法,統(tǒng)計整理并制作了如下的統(tǒng)計圖:(1)求這次調(diào)查的家長人數(shù),并補全圖1;(2)求圖2中表示家長“贊成”的圓心角的度數(shù);(3)已知某地區(qū)共6500名家長,估計其中反對中學生帶手機的大約有多少名家長?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】分析:商場經(jīng)理要了解哪些型號最暢銷,所關心的即為眾數(shù).詳解:根據(jù)題意知:對商場經(jīng)理來說,最有意義的是各種型號的襯衫的銷售數(shù)量,即眾數(shù).故選:C.點睛:此題主要考查統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.2、B【解析】

根據(jù)一元二次方程的解的定義,把x=2代入得4-6+k=0,然后解關于k的方程即可.【詳解】把x=2代入得,4-6+k=0,解得k=2.故答案為:B.【點睛】本題主要考查了一元二次方程的解,掌握一元二次方程的定義,把已知代入方程,列出關于k的新方程,通過解新方程來求k的值是解題的關鍵.3、D【解析】

根據(jù)題意可以求得P1,點P2,點P3的坐標,從而可以發(fā)現(xiàn)其中的變化的規(guī)律,從而可以求得P2018的坐標,本題得以解決.【詳解】解:由題意可得,

點P1(1,1),點P2(3,-1),點P3(5,1),

∴P2018的橫坐標為:2×2018-1=4035,縱坐標為:-1,

即P2018的坐標為(4035,-1),

故選:D.【點睛】本題考查了點的坐標變化規(guī)律,解答本題的關鍵是發(fā)現(xiàn)各點的變化規(guī)律,求出相應的點的坐標.4、D【解析】

先由兩組對邊分別平行的四邊形為平行四邊形,根據(jù)DE∥CA,DF∥BA,得出AEDF為平行四邊形,得出①正確;當∠BAC=90°,根據(jù)推出的平行四邊形AEDF,利用有一個角為直角的平行四邊形為矩形可得出②正確;若AD平分∠BAC,得到一對角相等,再根據(jù)兩直線平行內(nèi)錯角相等又得到一對角相等,等量代換可得∠EAD=∠EDA,利用等角對等邊可得一組鄰邊相等,根據(jù)鄰邊相等的平行四邊形為菱形可得出③正確;由AB=AC,AD⊥BC,根據(jù)等腰三角形的三線合一可得AD平分∠BAC,同理可得四邊形AEDF是菱形,④正確,進而得到正確說法的個數(shù).【詳解】解:∵DE∥CA,DF∥BA,∴四邊形AEDF是平行四邊形,選項①正確;若∠BAC=90°,∴平行四邊形AEDF為矩形,選項②正確;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四邊形AEDF為菱形,選項③正確;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四邊形AEDF為菱形,選項④正確,則其中正確的個數(shù)有4個.故選D.【點睛】此題考查了平行四邊形的定義,菱形、矩形的判定,涉及的知識有:平行線的性質(zhì),角平分線的定義,以及等腰三角形的判定與性質(zhì),熟練掌握平行四邊形、矩形及菱形的判定與性質(zhì)是解本題的關鍵.5、A【解析】

眾數(shù)指一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),根據(jù)眾數(shù)的定義就可以求解.【詳解】在這一組數(shù)據(jù)中1是出現(xiàn)次數(shù)最多的,故眾數(shù)是1.故選:A.【點睛】本題為統(tǒng)計題,考查眾數(shù)的意義.眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.6、C【解析】

連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AB的垂直平分線可知,點B關于直線EF的對稱點為點A,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.【詳解】如圖,連接AD.∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=12,解得:AD=6(cm).∵EF是線段AB的垂直平分線,∴點B關于直線EF的對稱點為點A,∴AD的長為BM+MD的最小值,∴△BDM的周長最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故選C.【點睛】本題考查的是軸對稱﹣最短路線問題,熟知等腰三角形三線合一的性質(zhì)是解答此題的關鍵.7、B【解析】

由平面圖形的折疊及正方體的展開圖解題.【詳解】A、C、D經(jīng)過折疊均能圍成正方體,B折疊后上邊沒有面,不能折成正方體.故選B.【點睛】此題主要考查平面圖形的折疊及正方體的展開圖,熟練掌握,即可解題.8、B【解析】

根據(jù)反比例函數(shù)的圖象的位置確定其比例系數(shù)的符號,利用反比例函數(shù)的性質(zhì)進行判斷即可.【詳解】解:∵反比例函數(shù)的圖象位于一三象限,∴m>0故①錯誤;當反比例函數(shù)的圖象位于一三象限時,在每一象限內(nèi),y隨x的增大而減小,故②錯誤;將A(﹣1,h),B(2,k)代入y=,得到h=﹣m,2k=m,∵m>0∴h<k故③正確;將P(x,y)代入y=得到m=xy,將P′(﹣x,﹣y)代入y=得到m=xy,故P(x,y)在圖象上,則P′(﹣x,﹣y)也在圖象上故④正確,故選:B.【點睛】本題考查了反比例函數(shù)的性質(zhì),牢記反比例函數(shù)的比例系數(shù)的符號與其圖象的關系是解決本題的關鍵.9、C【解析】

畫樹狀圖求出共有12種等可能結(jié)果,符合題意得有2種,從而求解.【詳解】解:畫樹狀圖得:∵共有12種等可能的結(jié)果,兩次都摸到白球的有2種情況,∴兩次都摸到白球的概率是:.故答案為C.【點睛】本題考查畫樹狀圖求概率,掌握樹狀圖的畫法準確求出所有的等可能結(jié)果及符合題意的結(jié)果是本題的解題關鍵.10、C【解析】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,又∵∠ADE=∠EFC,∴∠B=∠EFC,△ADE∽△EFC,∴BD∥EF,,∴四邊形BFED是平行四邊形,∴BD=EF,∴,解得:DE=10.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

由折疊可得∠3=180°﹣2∠2,進而可得∠3的度數(shù),然后再根據(jù)兩直線平行,同旁內(nèi)角互補可得∠1+∠3=180°,進而可得∠1的度數(shù).【詳解】解:由折疊可得∠3=180°﹣2∠2=180°﹣1°=70°,∵AB∥CD,∴∠1+∠3=180°,∴∠1=180°﹣70°=1°,故答案為1.12、1【解析】試題分析:設x秒時,甲乙兩點相遇.根據(jù)題意得:10x-5x=250,解得:x=50,相遇時甲走了250m,乙走了500米,則根據(jù)題意推得第一次在同一邊上時可以為1.13、80°.【解析】

由于直尺外形是矩形,根據(jù)矩形的性質(zhì)可知對邊平行,所以∠4=∠3,再根據(jù)外角的性質(zhì)即可求出結(jié)果.【詳解】解:如圖所示,依題意得:∠4=∠3,∵∠4=∠2+∠1=80°∴∠3=80°.故答案為80°.【點睛】本題考查了平行線的性質(zhì)和三角形外角的性質(zhì),掌握三角形外角的性質(zhì)是解題的關鍵.14、﹣1.【解析】分析:由已知易得:a+b=0,再把代數(shù)式a1+ab-1化為為a(a+b)-1即可求得其值了.詳解:∵a與b互為相反數(shù),∴a+b=0,∴a1+ab-1=a(a+b)-1=0-1=-1.故答案為:-1.點睛:知道“互為相反數(shù)的兩數(shù)的和為0”及“能夠把a1+ab-1化為為a(a+b)-1”是正確解答本題的關鍵.15、(,1)或(﹣,1)【解析】

根據(jù)直線和圓相切,則圓心到直線的距離等于圓的半徑,得點P的縱坐標是1或-1.將P的縱坐標代入函數(shù)解析式,求P點坐標即可【詳解】根據(jù)直線和圓相切,則圓心到直線的距離等于圓的半徑,得點P的縱坐標是1或-1.當y=1時,x1-1=1,解得x=±當y=-1時,x1-1=-1,方程無解故P點的坐標為()或(-)【點睛】此題注意應考慮兩種情況.熟悉直線和圓的位置關系應滿足的數(shù)量關系是解題的關鍵.16、(﹣b,a)【解析】解:如圖,從A、A1向x軸作垂線,設A1的坐標為(x,y),設∠AOX=α,∠A1OD=β,A1坐標(x,y)則α+β="90°sinα=cosβ"cosα="sinβ"sinα==cosβ=同理cosα==sinβ=所以x=﹣b,y=a,故A1坐標為(﹣b,a).【點評】重點理解三角函數(shù)的定義和求解方法,主要應用公式sinα=cosβ,cosα=sinβ.三、解答題(共8題,共72分)17、(1)詳見解析;(2)72°;(3)3【解析】

(1)由B類型的人數(shù)及其百分比求得總?cè)藬?shù),在用總?cè)藬?shù)減去其余各組人數(shù)得出C類型人數(shù),即可補全條形圖;(2)用360°乘以C類別人數(shù)所占比例即可得;(3)用列表法或畫樹狀圖法列出所有等可能結(jié)果,從中確定恰好抽到一男一女的結(jié)果數(shù),根據(jù)概率公式求解可得.【詳解】解:(1)∵抽查的總?cè)藬?shù)為:20÷40%=50(人)∴C類人數(shù)為:50-5-20-15=10(人)補全條形統(tǒng)計圖如下:(2)“碳酸飲料”所在的扇形的圓心角度數(shù)為:10(3)設男生為A1、A2,女生為B1、B畫樹狀圖得:∴恰好抽到一男一女的情況共有12種,分別是A∴P(恰好抽到一男一女)=12【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用以及概率的求法,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?8、x=1【解析】

方程兩邊同乘轉(zhuǎn)化為整式方程,解整式方程后進行檢驗即可得.【詳解】解:方程兩邊同乘得:,整理,得,解這個方程得,,經(jīng)檢驗,是增根,舍去,所以,原方程的根是.【點睛】本題考查了解分式方程,解分式方程的關鍵是方程兩邊同乘分母的最簡公分母化為整式方程然后求解,注意要進行檢驗.19、(1),45°;(2)不成立,理由見解析;(3).【解析】

(1)由正方形的性質(zhì),可得,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性質(zhì)得到,∠CAB==45°,又因為∠CBA=90°,所以∠AHB=45°.(2)由矩形的性質(zhì),及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性質(zhì)可得∠CAE=∠CBF,,則∠CAB=60°,又因為∠CBA=90°,求得∠AHB=30°,故不成立.(3)分兩種情況討論:①作BM⊥AE于M,因為A、E、F三點共線,及∠AFB=30°,∠AFC=90°,進而求得AC和EF,根據(jù)勾股定理求得AF,則AE=AF﹣EF,再由(2)得:,所以BF=3﹣3,故BM=.②如圖3所示:作BM⊥AE于M,由A、E、F三點共線,得:AE=6+2,BF=3+3,則BM=.【詳解】解:(1)如圖1所示:∵四邊形ABCD和EFCG均為正方形,∴,∠ACB=∠GEC=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣45°=45°,故答案為,45°;(2)不成立;理由如下:∵四邊形ABCD和EFCG均為矩形,且∠ACB=∠ECF=30°,∴,∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=60°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣60°=30°;(3)分兩種情況:①如圖2所示:作BM⊥AE于M,當A、E、F三點共線時,由(2)得:∠AFB=30°,∠AFC=90°,在Rt△ABC和Rt△CEF中,∵∠ACB=∠ECF=30°,∴AC=,EF=CF×tan30°=6×=2,在Rt△ACF中,AF=,∴AE=AF﹣EF=6﹣2,由(2)得:,∴BF=(6﹣2)=3﹣3,在△BFM中,∵∠AFB=30°,∴BM=BF=;②如圖3所示:作BM⊥AE于M,當A、E、F三點共線時,同(2)得:AE=6+2,BF=3+3,則BM=BF=;綜上所述,當A、E、F三點共線時,點B到直線AE的距離為.【點睛】本題考察正方形的性質(zhì)和矩形的性質(zhì)以及三點共線,熟練掌握正方形的性質(zhì)和矩形的性質(zhì),知道分類討論三點共線問題是解題的關鍵.本題屬于中等偏難.20、(1)斜坡CD的高度DE是5米;(2)大樓AB的高度是34米.【解析】試題分析:(1)根據(jù)在大樓AB的正前方有一斜坡CD,CD=13米,坡度為1:,高為DE,可以求得DE的高度;(2)根據(jù)銳角三角函數(shù)和題目中的數(shù)據(jù)可以求得大樓AB的高度.試題解析:(1)∵在大樓AB的正前方有一斜坡CD,CD=13米,坡度為1:,∴,設DE=5x米,則EC=12x米,∴(5x)2+(12x)2=132,解得:x=1,∴5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)過點D作AB的垂線,垂足為H,設DH的長為x,由題意可知∠BDH=45°,∴BH=DH=x,DE=5,在直角三角形CDE中,根據(jù)勾股定理可求CE=12,AB=x+5,AC=x-12,∵tan64°=,∴2=,解得,x=29,AB=x+5=34,即大樓AB的高度是34米.21、(1)12(2)y=(0<x<5)(3)或【解析】試題分析:(1)過點A作AH⊥BC于點H,根據(jù)cosB=求得BH的長,從而根據(jù)已知可求得AH的長,BC的長,再利用三角形的面積公式即可得;(2)先證明△BPD∽△BAC,得到=,再根據(jù),代入相關的量即可得;(3)分情況進行討論即可得.試題解析:(1)過點A作AH⊥BC于點H,則∠AHB=90°,∴cosB=,∵cosB=,AB=5,∴BH=4,∴AH=3,∵AB=AC,∴BC=2BH=8,∴S△ABC=×8×3=12(2)∵PB=PD,∴∠B=∠PDB,∵AB=AC,∴∠B=∠C,∴∠C=∠PDB,∴△BPD∽△BAC,∴,即,解得=,∴,∴,解得y=(0<x<5);(3)∠APD<90°,過C作CE⊥AB交BA延長線于E,可得cos∠CAE=,①當∠ADP=90°時,cos∠APD=cos∠CAE=,即,解得x=;②當∠PAD=90°時,,解得x=,綜上所述,PB=或.【點睛】本題考查了相似三角形的判定與性質(zhì)、底在同一直線上且高相等的三角形面積的關系等,結(jié)合圖形及已知選擇恰當?shù)闹R進行解答是關鍵.22、(1)25;(2)平均數(shù):28.15,所以眾數(shù)是28,中位數(shù)為28,(3)體育測試成績得滿分的大約有300名學生.【解析】

(1)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得m的值;

(2)根據(jù)條形統(tǒng)計圖中的數(shù)據(jù)可以計算出平均數(shù),得到眾數(shù)和中位數(shù);

(3)根據(jù)樣本中得滿分所占的百分比,可以求得該中學九年級2000名學生中,體育測試成績得滿分的大約有多少名學生.【詳解】解:(1),∴m的值為25;(2)平均數(shù):,因為在這組樣本數(shù)據(jù)中,28出現(xiàn)了12次,出現(xiàn)的次數(shù)最多,所以眾數(shù)是28;因為將這組樣本數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個數(shù)都是28,所以這組樣本數(shù)據(jù)的中位數(shù)為28;(3)×2000=300(名)∴估計該中學九年級2000名學生中,體育測試成績得滿分的大約有300名學生.【點睛】本題考查條形統(tǒng)計圖、用樣本估計總體、加權(quán)平均數(shù)、中位數(shù)、眾數(shù),解答本題的關鍵是明確它們各自的計算方法.23、(1);6;(2)有最小值;(3),.【解析】

(1)先求出點B,C坐標,利用待定系數(shù)法求出拋物線解析式,進而求出點A坐標,即可求出半圓的直徑,再構(gòu)造直角三角形求出點D的坐標即可求出BD;

(2)先判斷出要求的最小值,只要CG最大即可,再求出直線EG解析式和拋物線解析式聯(lián)立成的方程只有一個交點,求出直線EG解析式,即可求出CG,結(jié)論得證.

(3)求出線段AC,BC進而判斷出滿足條件的一個點P和點B重合,再利用拋物線的對稱性求出另一個點P.【詳解】解:(1)對于直線y=x-3,令x=0,

∴y=-3,

∴B(0,-3),

令y=0,

∴x-3=0,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論