版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知常數(shù)k<0,b>0,則函數(shù)y=kx+b,的圖象大致是下圖中的()A. B.C. D.2.已知⊙O1與⊙O2的半徑分別是3cm和5cm,兩圓的圓心距為4cm,則兩圓的位置關(guān)系是()A.相交B.內(nèi)切C.外離D.內(nèi)含3.運(yùn)用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是(
)A. B. C. D.4.如圖1,點P從△ABC的頂點B出發(fā),沿B→C→A勻速運(yùn)動到點A,圖2是點P運(yùn)動時,線段BP的長度y隨時間x變化的關(guān)系圖象,其中M為曲線部分的最低點,則△ABC的面積是()A.10 B.12 C.20 D.245.小剛從家去學(xué)校,先勻速步行到車站,等了幾分鐘后坐上了公交車,公交車勻速行駛一段時后到達(dá)學(xué)校,小剛從家到學(xué)校行駛路程s(單位:m)與時間r(單位:min)之間函數(shù)關(guān)系的大致圖象是()A. B. C. D.6.據(jù)《關(guān)于“十三五”期間全面深入推進(jìn)教育信息化工作的指導(dǎo)意見》顯示,全國6000萬名師生已通過“網(wǎng)絡(luò)學(xué)習(xí)空間”探索網(wǎng)絡(luò)條件下的新型教學(xué)、學(xué)習(xí)與教研模式,教育公共服務(wù)平臺基本覆蓋全國學(xué)生、教職工等信息基礎(chǔ)數(shù)據(jù)庫,實施全國中小學(xué)教師信息技術(shù)應(yīng)用能力提升工程.則數(shù)字6000萬用科學(xué)記數(shù)法表示為()A.6×105 B.6×106 C.6×107 D.6×1087.老師在微信群發(fā)了這樣一個圖:以線段AB為邊作正五邊形ABCDE和正三角形ABG,連接AC、DG,交點為F,下列四位同學(xué)的說法不正確的是()A.甲 B.乙 C.丙 D.丁8.已知點A(0,﹣4),B(8,0)和C(a,﹣a),若過點C的圓的圓心是線段AB的中點,則這個圓的半徑的最小值是()A. B. C. D.29.設(shè)a,b是常數(shù),不等式的解集為,則關(guān)于x的不等式的解集是()A. B. C. D.10.關(guān)于反比例函數(shù),下列說法正確的是()A.函數(shù)圖像經(jīng)過點(2,2); B.函數(shù)圖像位于第一、三象限;C.當(dāng)時,函數(shù)值隨著的增大而增大; D.當(dāng)時,.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,一名滑雪運(yùn)動員沿著傾斜角為34°的斜坡,從A滑行至B,已知AB=500米,則這名滑雪運(yùn)動員的高度下降了_____米.(參考數(shù)據(jù):sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)12.如圖,已知圓錐的底面⊙O的直徑BC=6,高OA=4,則該圓錐的側(cè)面展開圖的面積為.13.如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=1.若把矩形OABC繞著點O逆時針旋轉(zhuǎn),使點A恰好落在BC邊上的A1處,則點C的對應(yīng)點C1的坐標(biāo)為_____.14.如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,B為格點(Ⅰ)AB的長等于__(Ⅱ)請用無刻度的直尺,在如圖所示的網(wǎng)格中求作一點C,使得CA=CB且△ABC的面積等于,并簡要說明點C的位置是如何找到的__________________15.如圖,四邊形ABCD為矩形,H、F分別為AD、BC邊的中點,四邊形EFGH為矩形,E、G分別在AB、CD邊上,則圖中四個直角三角形面積之和與矩形EFGH的面積之比為_____.16.一組數(shù)據(jù):1,2,a,4,5的平均數(shù)為3,則a=_____.17.輪船沿江從A港順流行駛到B港,比從B港返回A港少用3h,若靜水時船速為26km/h,水速為2km/h,則A港和B港相距_____km.三、解答題(共7小題,滿分69分)18.(10分)已知:如圖,在△ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,E為的中點.求證:∠ACD=∠DEC;(2)延長DE、CB交于點P,若PB=BO,DE=2,求PE的長19.(5分)如圖,AC是⊙O的直徑,點P在線段AC的延長線上,且PC=CO,點B在⊙O上,且∠CAB=30°.(1)求證:PB是⊙O的切線;(2)若D為圓O上任一動點,⊙O的半徑為5cm時,當(dāng)弧CD長為時,四邊形ADPB為菱形,當(dāng)弧CD長為時,四邊形ADCB為矩形.20.(8分)(14分)如圖,在平面直角坐標(biāo)系中,拋物線y=mx2﹣8mx+4m+2(m>2)與y軸的交點為A,與x軸的交點分別為B(x1,0),C(x2,0),且x2﹣x1=4,直線AD∥x軸,在x軸上有一動點E(t,0)過點E作平行于y軸的直線l與拋物線、直線AD的交點分別為P、Q.(1)求拋物線的解析式;(2)當(dāng)0<t≤8時,求△APC面積的最大值;(3)當(dāng)t>2時,是否存在點P,使以A、P、Q為頂點的三角形與△AOB相似?若存在,求出此時t的值;若不存在,請說明理由.21.(10分)如圖,已知點A(1,a)是反比例函數(shù)y1=的圖象上一點,直線y2=﹣與反比例函數(shù)y1=的圖象的交點為點B、D,且B(3,﹣1),求:(Ⅰ)求反比例函數(shù)的解析式;(Ⅱ)求點D坐標(biāo),并直接寫出y1>y2時x的取值范圍;(Ⅲ)動點P(x,0)在x軸的正半軸上運(yùn)動,當(dāng)線段PA與線段PB之差達(dá)到最大時,求點P的坐標(biāo).22.(10分)如圖1,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx﹣與x軸交于點A(1,0)和點B(﹣3,0).繞點A旋轉(zhuǎn)的直線l:y=kx+b1交拋物線于另一點D,交y軸于點C.(1)求拋物線的函數(shù)表達(dá)式;(2)當(dāng)點D在第二象限且滿足CD=5AC時,求直線l的解析式;(3)在(2)的條件下,點E為直線l下方拋物線上的一點,直接寫出△ACE面積的最大值;(4)如圖2,在拋物線的對稱軸上有一點P,其縱坐標(biāo)為4,點Q在拋物線上,當(dāng)直線l與y軸的交點C位于y軸負(fù)半軸時,是否存在以點A,D,P,Q為頂點的平行四邊形?若存在,請直接寫出點D的橫坐標(biāo);若不存在,請說明理由.23.(12分)如圖1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的長為;(2)D是OA上一點,以BD為直徑作⊙M,⊙M交AB于點Q.當(dāng)⊙M與y軸相切時,sin∠BOQ=;(3)如圖2,動點P以每秒1個單位長度的速度,從點O沿線段OA向點A運(yùn)動;同時動點D以相同的速度,從點B沿折線B﹣C﹣O向點O運(yùn)動.當(dāng)點P到達(dá)點A時,兩點同時停止運(yùn)動.過點P作直線PE∥OC,與折線O﹣B﹣A交于點E.設(shè)點P運(yùn)動的時間為t(秒).求當(dāng)以B、D、E為頂點的三角形是直角三角形時點E的坐標(biāo).24.(14分)如圖,AB是⊙O的直徑,CD切⊙O于點D,且BD∥OC,連接AC.(1)求證:AC是⊙O的切線;(2)若AB=OC=4,求圖中陰影部分的面積(結(jié)果保留根號和π)
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
當(dāng)k<0,b>0時,直線經(jīng)過一、二、四象限,雙曲線在二、四象限,由此確定正確的選項.【詳解】解:∵當(dāng)k<0,b>0時,直線與y軸交于正半軸,且y隨x的增大而減小,∴直線經(jīng)過一、二、四象限,雙曲線在二、四象限.故選D.【點睛】本題考查了一次函數(shù)、反比例函數(shù)的圖象與性質(zhì).關(guān)鍵是明確系數(shù)與圖象的位置的聯(lián)系.2、A【解析】試題分析:∵⊙O1和⊙O2的半徑分別為5cm和3cm,圓心距O1O2=4cm,5﹣3<4<5+3,∴根據(jù)圓心距與半徑之間的數(shù)量關(guān)系可知⊙O1與⊙O2相交.故選A.考點:圓與圓的位置關(guān)系.3、A【解析】【分析】作直徑CG,連接OD、OE、OF、DG,則根據(jù)圓周角定理求得DG的長,證明DG=EF,則S扇形ODG=S扇形OEF,然后根據(jù)三角形的面積公式證明S△OCD=S△ACD,S△OEF=S△AEF,則S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓,即可求解.【詳解】作直徑CG,連接OD、OE、OF、DG.∵CG是圓的直徑,∴∠CDG=90°,則DG==8,又∵EF=8,∴DG=EF,∴,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓=π×52=,故選A.【點睛】本題考查扇形面積的計算,圓周角定理.本題中找出兩個陰影部分面積之間的聯(lián)系是解題的關(guān)鍵.4、B【解析】
根據(jù)圖象可知點P在BC上運(yùn)動時,此時BP不斷增大,而從C向A運(yùn)動時,BP先變小后變大,從而可求出BC與AC的長度.【詳解】解:根據(jù)圖象可知點P在BC上運(yùn)動時,此時BP不斷增大,
由圖象可知:點P從B向C運(yùn)動時,BP的最大值為5,即BC=5,
由于M是曲線部分的最低點,
∴此時BP最小,即BP⊥AC,BP=4,
∴由勾股定理可知:PC=3,
由于圖象的曲線部分是軸對稱圖形,
∴PA=3,
∴AC=6,
∴△ABC的面積為:×4×6=12.故選:B.【點睛】本題考查動點問題的函數(shù)圖象,解題關(guān)鍵是注意結(jié)合圖象求出BC與AC的長度,本題屬于中等題型.5、B【解析】【分析】根據(jù)小剛行駛的路程與時間的關(guān)系,確定出圖象即可.【詳解】小剛從家到學(xué)校,先勻速步行到車站,因此S隨時間t的增長而增長,等了幾分鐘后坐上了公交車,因此時間在增加,S不增長,坐上了公交車,公交車沿著公路勻速行駛一段時間后到達(dá)學(xué)校,因此S又隨時間t的增長而增長,故選B.【點睛】本題考查了函數(shù)的圖象,認(rèn)真分析,理解題意,確定出函數(shù)圖象是解題的關(guān)鍵.6、C【解析】
將一個數(shù)寫成的形式,其中,n是正數(shù),這種記數(shù)的方法叫做科學(xué)記數(shù)法,根據(jù)定義解答即可.【詳解】解:6000萬=6×1.故選:C.【點睛】此題考查科學(xué)記數(shù)法,當(dāng)所表示的數(shù)的絕對值大于1時,n為正整數(shù),其值等于原數(shù)中整數(shù)部分的數(shù)位減去1,當(dāng)要表示的數(shù)的絕對值小于1時,n為負(fù)整數(shù),其值等于原數(shù)中第一個非零數(shù)字前面所有零的個數(shù)的相反數(shù),正確掌握科學(xué)記數(shù)法中n的值的確定是解題的關(guān)鍵.7、B【解析】
利用對稱性可知直線DG是正五邊形ABCDE和正三角形ABG的對稱軸,再利用正五邊形、等邊三角形的性質(zhì)一一判斷即可;【詳解】∵五邊形ABCDE是正五邊形,△ABG是等邊三角形,∴直線DG是正五邊形ABCDE和正三角形ABG的對稱軸,∴DG垂直平分線段AB,∵∠BCD=∠BAE=∠EDC=108°,∴∠BCA=∠BAC=36°,∴∠DCA=72°,∴∠CDE+∠DCA=180°,∴DE∥AC,∴∠CDF=∠EDF=∠CFD=72°,∴△CDF是等腰三角形.故丁、甲、丙正確.故選B.【點睛】本題考查正多邊形的性質(zhì)、等邊三角形的性質(zhì)、軸對稱圖形的性質(zhì)等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考??碱}型.8、B【解析】
首先求得AB的中點D的坐標(biāo),然后求得經(jīng)過點D且垂直于直線y=-x的直線的解析式,然后求得與y=-x的交點坐標(biāo),再求得交點與D之間的距離即可.【詳解】AB的中點D的坐標(biāo)是(4,-2),∵C(a,-a)在一次函數(shù)y=-x上,∴設(shè)過D且與直線y=-x垂直的直線的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,則函數(shù)解析式是y=x-1.根據(jù)題意得:,解得:,則交點的坐標(biāo)是(3,-3).則這個圓的半徑的最小值是:=.
故選:B【點睛】本題考查了待定系數(shù)法求函數(shù)的解析式,以及兩直線垂直的條件,正確理解C(a,-a),一定在直線y=-x上,是關(guān)鍵.9、C【解析】
根據(jù)不等式的解集為x<即可判斷a,b的符號,則根據(jù)a,b的符號,即可解不等式bx-a<0【詳解】解不等式,移項得:∵解集為x<∴,且a<0∴b=-5a>0,解不等式,移項得:bx>a兩邊同時除以b得:x>,即x>-故選C【點睛】此題考查解一元一次不等式,掌握運(yùn)算法則是解題關(guān)鍵10、C【解析】
直接利用反比例函數(shù)的性質(zhì)分別分析得出答案.【詳解】A、關(guān)于反比例函數(shù)y=-,函數(shù)圖象經(jīng)過點(2,-2),故此選項錯誤;B、關(guān)于反比例函數(shù)y=-,函數(shù)圖象位于第二、四象限,故此選項錯誤;C、關(guān)于反比例函數(shù)y=-,當(dāng)x>0時,函數(shù)值y隨著x的增大而增大,故此選項正確;D、關(guān)于反比例函數(shù)y=-,當(dāng)x>1時,y>-4,故此選項錯誤;故選C.【點睛】此題主要考查了反比例函數(shù)的性質(zhì),正確掌握相關(guān)函數(shù)的性質(zhì)是解題關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】試題解析:在RtΔABC中,sin34°=∴AC=AB×sin34°=500×0.56=1米.故答案為1.12、15π.【解析】試題分析:∵OB=BC=3,OA=4,由勾股定理,AB=5,側(cè)面展開圖的面積為:×6π×5=15π.故答案為15π.考點:圓錐的計算.13、【解析】
直接利用相似三角形的判定與性質(zhì)得出△ONC1三邊關(guān)系,再利用勾股定理得出答案.【詳解】過點C1作C1N⊥x軸于點N,過點A1作A1M⊥x軸于點M,由題意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,則△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴設(shè)NO=1x,則NC1=4x,OC1=1,則(1x)2+(4x)2=9,解得:x=±(負(fù)數(shù)舍去),則NO=,NC1=,故點C的對應(yīng)點C1的坐標(biāo)為:(﹣,).故答案為(﹣,).【點睛】此題主要考查了矩形的性質(zhì)以及勾股定理等知識,正確得出△A1OM∽△OC1N是解題關(guān)鍵.14、取格點P、N(S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.【解析】
(Ⅰ)利用勾股定理計算即可;(Ⅱ)取格點P、N(S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.【詳解】解:(Ⅰ)AB==,故答案為.(Ⅱ)如圖取格點P、N(使得S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.故答案為:取格點P、N(S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.【點睛】本題考查作圖﹣應(yīng)用與設(shè)計,線段的垂直平分線的性質(zhì)、等高模型等知識,解題的關(guān)鍵是學(xué)會利用數(shù)形結(jié)合的思想思考問題,屬于中考常考題型.15、1:1【解析】
根據(jù)矩形性質(zhì)得出AD=BC,AD∥BC,∠D=90°,求出四邊形HFCD是矩形,得出△HFG的面積是CD×DH=S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.【詳解】連接HF,∵四邊形ABCD為矩形,∴AD=BC,AD∥BC,∠D=90°∵H、F分別為AD、BC邊的中點,∴DH=CF,DH∥CF,∵∠D=90°,∴四邊形HFCD是矩形,∴△HFG的面積是CD×DH=S矩形HFCD,即S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,∴圖中四個直角三角形面積之和與矩形EFGH的面積之比是1:1,故答案為1:1.【點睛】本題考查了矩形的性質(zhì)和判定,三角形的面積,主要考查學(xué)生的推理能力.16、1【解析】依題意有:(1+2+a+4+5)÷5=1,解得a=1.故答案為1.17、1.【解析】
根據(jù)逆流速度=靜水速度-水流速度,順流速度=靜水速度+水流速度,表示出逆流速度與順流速度,根據(jù)題意列出方程,求出方程的解問題可解.【詳解】解:設(shè)A港與B港相距xkm,
根據(jù)題意得:,
解得:x=1,
則A港與B港相距1km.
故答案為:1.【點睛】此題考查了分式方程的應(yīng)用題,解答關(guān)鍵是在順流、逆流過程中找出等量關(guān)系構(gòu)造方程.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)PE=4.【解析】
(1)根據(jù)同角的余角相等得到∠ACD=∠B,然后由圓周角定理可得結(jié)論;(2)連結(jié)OE,根據(jù)圓周角定理和等腰三角形的性質(zhì)證明OE∥CD,然后由△POE∽△PCD列出比例式,求解即可.【詳解】解:(1)證明:∵BC是⊙O的直徑,∴∠BDC=90°,∴∠BCD+∠B=90°,∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠ACD=∠B,∵∠DEC=∠B,∴∠ACD=∠DEC(2)證明:連結(jié)OE∵E為BD弧的中點.∴∠DCE=∠BCE∵OC=OE∴∠BCE=∠OEC∴∠DCE=∠OEC∴OE∥CD∴△POE∽△PCD,∴∵PB=BO,DE=2∴PB=BO=OC∴∴∴PE=4【點睛】本題是圓的綜合題,主要考查了圓周角定理、等腰三角形的判定和性質(zhì)、相似三角形的判定與性質(zhì),熟練掌握圓的相關(guān)知識和相似三角形的性質(zhì)是解題的關(guān)鍵.19、(1)證明見解析(2)cm,cm【解析】【分析】(1)連接OB,要證明PB是切線,只需證明OB⊥PB即可;(2)利用菱形、矩形的性質(zhì),求出圓心角∠COD即可解決問題.【詳解】(1)如圖連接OB、BC,∵OA=OB,∴∠OAB=∠OBA=30°,∴∠COB=∠OAB=∠OBA=60°,∵OB=OC,∴△OBC是等邊三角形,∴BC=OC,∵PC=OA=OC,∴BC=CO=CP,∴∠PBO=90°,∴OB⊥PB,∴PB是⊙O的切線;(2)①的長為cm時,四邊形ADPB是菱形,∵四邊形ADPB是菱形,∠ADB=△ACB=60°,∴∠COD=2∠CAD=60°,∴的長=cm;②當(dāng)四邊形ADCB是矩形時,易知∠COD=120°,∴的長=cm,故答案為:cm,cm.【點睛】本題考查了圓的綜合題,涉及到切線的判定、矩形的性質(zhì)、菱形的性質(zhì)、弧長公式等知識,準(zhǔn)確添加輔助線、靈活應(yīng)用相關(guān)知識解決問題是關(guān)鍵.20、(1)y=14x2-2x+3【解析】試題分析:(1)首先利用根與系數(shù)的關(guān)系得出:x1+x2=8試題解析:解:(1)由題意知x1、x2是方程mx2﹣8mx+4m+2=0的兩根,∴x1+x2=8,由.解得:.∴B(2,0)、C(6,0)則4m﹣16m+4m+2=0,解得:m=,∴該拋物線解析式為:y=;.(2)可求得A(0,3)設(shè)直線AC的解析式為:y=kx+b,∵∴∴直線AC的解析式為:y=﹣x+3,要構(gòu)成△APC,顯然t≠6,分兩種情況討論:當(dāng)0<t<6時,設(shè)直線l與AC交點為F,則:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S△CPF===,此時最大值為:,②當(dāng)6≤t≤8時,設(shè)直線l與AC交點為M,則:M(t,﹣),∵P(t,),∴PM=,∴S△APC=S△APF﹣S△CPF===,當(dāng)t=8時,取最大值,最大值為:12,綜上可知,當(dāng)0<t≤8時,△APC面積的最大值為12;(3)如圖,連接AB,則△AOB中,∠AOB=90°,AO=3,BO=2,Q(t,3),P(t,),①當(dāng)2<t≤6時,AQ=t,PQ=,若:△AOB∽△AQP,則:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,則:,即:,∴t=0(舍)或t=2(舍),②當(dāng)t>6時,AQ′=t,PQ′=,若:△AOB∽△AQP,則:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,則:,即:,∴t=0(舍)或t=1,∴t=或t=或t=1.考點:二次函數(shù)綜合題.21、(1)反比例函數(shù)的解析式為y=﹣;(2)D(﹣2,);﹣2<x<0或x>3;(3)P(4,0).【解析】試題分析:(1)把點B(3,﹣1)帶入反比例函數(shù)中,即可求得k的值;(2)聯(lián)立直線和反比例函數(shù)的解析式構(gòu)成方程組,化簡為一個一元二次方程,解方程即可得到點D坐標(biāo),觀察圖象可得相應(yīng)x的取值范圍;(3)把A(1,a)是反比例函數(shù)的解析式,求得a的值,可得點A坐標(biāo),用待定系數(shù)法求得直線AB的解析式,令y=0,解得x的值,即可求得點P的坐標(biāo).試題解析:(1)∵B(3,﹣1)在反比例函數(shù)的圖象上,∴-1=,∴m=-3,∴反比例函數(shù)的解析式為;(2),∴=,x2-x-6=0,(x-3)(x+2)=0,x1=3,x2=-2,當(dāng)x=-2時,y=,∴D(-2,);y1>y2時x的取值范圍是-2<x<0或x>;(3)∵A(1,a)是反比例函數(shù)的圖象上一點,∴a=-3,∴A(1,-3),設(shè)直線AB為y=kx+b,,∴,∴直線AB為y=x-4,令y=0,則x=4,∴P(4,0)22、(1)y=x2+x﹣;(2)y=﹣x+1;(3)當(dāng)x=﹣2時,最大值為;(4)存在,點D的橫坐標(biāo)為﹣3或或﹣.【解析】
(1)設(shè)二次函數(shù)的表達(dá)式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即可求解;(2)OC∥DF,則即可求解;(3)由S△ACE=S△AME﹣S△CME即可求解;(4)分當(dāng)AP為平行四邊形的一條邊、對角線兩種情況,分別求解即可.【詳解】(1)設(shè)二次函數(shù)的表達(dá)式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即:解得:故函數(shù)的表達(dá)式為:①;(2)過點D作DF⊥x軸交于點F,過點E作y軸的平行線交直線AD于點M,∵OC∥DF,∴OF=5OA=5,故點D的坐標(biāo)為(﹣5,6),將點A、D的坐標(biāo)代入一次函數(shù)表達(dá)式:y=mx+n得:,解得:即直線AD的表達(dá)式為:y=﹣x+1,(3)設(shè)點E坐標(biāo)為則點M坐標(biāo)為則∵故S△ACE有最大值,當(dāng)x=﹣2時,最大值為;(4)存在,理由:①當(dāng)AP為平行四邊形的一條邊時,如下圖,設(shè)點D的坐標(biāo)為將點A向左平移2個單位、向上平移4個單位到達(dá)點P的位置,同樣把點D左平移2個單位、向上平移4個單位到達(dá)點Q的位置,則點Q的坐標(biāo)為將點Q的坐標(biāo)代入①式并解得:②當(dāng)AP為平行四邊形的對角線時,如下圖,設(shè)點Q坐標(biāo)為點D的坐標(biāo)為(m,n),AP中點的坐標(biāo)為(0,2),該點也是DQ的中點,則:即:將點D坐標(biāo)代入①式并解得:故點D的橫坐標(biāo)為:或或.【點睛】本題考查的是二次函數(shù)綜合運(yùn)用,涉及到圖形平移、平行四邊形的性質(zhì)等,關(guān)鍵是(4)中,用圖形平移的方法求解點的坐標(biāo),本題難度大.23、(4)4;(2);(4)點E的坐標(biāo)為(4,2)、(,)、(4,2).【解析】分析:(4)過點B作BH⊥OA于H,如圖4(4),易證四邊形OCBH是矩形,從而有OC=BH,只需在△AHB中運(yùn)用三角函數(shù)求出BH即可.(2)過點B作BH⊥OA于H,過點G作GF⊥OA于F,過點B作BR⊥OG于R,連接MN、DG,如圖4(2),則有OH=2,BH=4,MN⊥OC.設(shè)圓的半徑為r,則MN=MB=MD=r.在Rt△BHD中運(yùn)用勾股定理可求出r=2,從而得到點D與點H重合.易證△AFG∽△ADB,從而可求出AF、GF、OF、OG、OB、AB、BG.設(shè)OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,進(jìn)而可求出BR.在Rt△ORB中運(yùn)用三角函數(shù)就可解決問題.(4)由于△BDE的直角不確定,故需分情況討論,可分三種情況(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)討論,然后運(yùn)用相似三角形的性質(zhì)及三角函數(shù)等知識建立關(guān)于t的方程就可解決問題.詳解:(4)過點B作BH⊥OA于H,如圖4(4),則有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四邊形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.故答案為4.(2)過點B作BH⊥OA于H,過點G作GF⊥OA于F,過點B作BR⊥OG于R,連接MN、DG,如圖4(2).由(4)得:OH=2,BH=4.∵OC與⊙M相切于N,∴MN⊥OC.設(shè)圓的半徑為r,則MN=MB=MD=r.∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.解得:r=2,∴DH=0,即點D與點H重合,∴BD⊥0A,BD=AD.∵BD是⊙M的直徑,∴∠BGD=90°,即DG⊥AB,∴BG=AG.∵GF⊥OA,BD⊥OA,∴GF∥BD,∴△AFG∽△ADB,∴===,∴AF=AD=2,GF=BD=2,∴OF=4,∴OG===2.同理可得:OB=2,AB=4,∴BG=AB=2.設(shè)OR=x,則RG=2﹣x.∵BR⊥OG,∴∠BRO=∠BRG=90°,∴BR2=OB2﹣OR2=BG2﹣RG2,∴(2)2﹣x2=(2)2﹣(2﹣x)2.解得:x=,∴BR2=OB2﹣OR2=(2)2﹣()2=,∴BR=.在Rt△ORB中,sin∠BOR===.故答案為.(4)①當(dāng)∠BDE=90°時,點D在直線PE上,如圖2.此時DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t.則有2t=2.解得:t=4.則OP=CD=DB=4.∵DE∥OC,∴△BDE∽△BCO,∴==,∴DE=2,∴EP=2,∴點E的坐標(biāo)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 滬科版八年級物理全一冊《2.2聲音的特性》同步測試題帶答案
- 人教版一年級下冊語文教案
- 新課標(biāo)人教版初中七年級上冊數(shù)學(xué)教案
- 考慮風(fēng)險約束的資產(chǎn)配置策略實證研究
- 英語四級詞匯
- 高一化學(xué)第一單元從實驗學(xué)化學(xué)第二講化學(xué)計量在實驗中的應(yīng)用練習(xí)題
- 2024高中地理第4章區(qū)域經(jīng)濟(jì)發(fā)展第1節(jié)第1課時東北地區(qū)農(nóng)業(yè)發(fā)展的地理條件和農(nóng)業(yè)布局精練含解析新人教版必修3
- 2024高中物理第二章勻變速直線運(yùn)動的研究1實驗:探究小車速度隨時間變化的規(guī)律課后作業(yè)含解析新人教版必修1
- 2024高中語文第一課走進(jìn)漢語的世界第1節(jié)美麗而奇妙的語言-認(rèn)識漢語練習(xí)含解析新人教版選修語言文字應(yīng)用
- 2024高中語文第四單元創(chuàng)造形象詩文有別自主賞析庖丁解牛學(xué)案新人教版選修中國古代詩歌散文欣賞
- 深圳大學(xué)學(xué)校簡介課件
- 通用卡尺檢定規(guī)程
- 臨床療效總評量表(CGI)
- 美世國際職位評估體系IPE3.0使用手冊
- 2020電網(wǎng)檢修工程預(yù)算定額第五冊 通信工程
- 圖像超分辨率增強(qiáng)技術(shù)
- 集裝箱貨運(yùn)碼頭的火災(zāi)防范措施
- 七年級數(shù)學(xué)上冊專題1.14數(shù)軸與絕對值綜合問題大題專練(重難點培優(yōu))-【講練課堂】2022-2023學(xué)年七年級數(shù)學(xué)上冊尖子生同步培優(yōu)題典(原卷版)【人教版】
- 社會保險職工增減表
- 小學(xué)語文低年級寫話 鴿子
- 仁愛英語八年級上冊詞匯練習(xí)題全冊
評論
0/150
提交評論