內(nèi)蒙古烏海市第四中學(xué)2023年中考押題數(shù)學(xué)預(yù)測卷含解析_第1頁
內(nèi)蒙古烏海市第四中學(xué)2023年中考押題數(shù)學(xué)預(yù)測卷含解析_第2頁
內(nèi)蒙古烏海市第四中學(xué)2023年中考押題數(shù)學(xué)預(yù)測卷含解析_第3頁
內(nèi)蒙古烏海市第四中學(xué)2023年中考押題數(shù)學(xué)預(yù)測卷含解析_第4頁
內(nèi)蒙古烏海市第四中學(xué)2023年中考押題數(shù)學(xué)預(yù)測卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若代數(shù)式有意義,則實數(shù)x的取值范圍是()A.x=0 B.x=3 C.x≠0 D.x≠32.如圖是由5個大小相同的正方體組成的幾何體,則該幾何體的主視圖是()A. B. C. D.3.如圖,在平面直角坐標(biāo)系中,把△ABC繞原點O旋轉(zhuǎn)180°得到△CDA,點A,B,C的坐標(biāo)分別為(﹣5,2),(﹣2,﹣2),(5,﹣2),則點D的坐標(biāo)為()A.(2,2) B.(2,﹣2) C.(2,5) D.(﹣2,5)4.安徽省在一次精準(zhǔn)扶貧工作中,共投入資金4670000元,將4670000用科學(xué)記數(shù)法表示為()A.4.67×107 B.4.67×106 C.46.7×105 D.0.467×1075.計算(-18)÷9的值是()A.-9 B.-27 C.-2 D.26.關(guān)于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一個根為0,則a值為()A.1 B.﹣1 C.±1 D.07.將拋物線向左平移2個單位長度,再向下平移3個單位長度,得到的拋物線的函數(shù)表達(dá)式為()A.B.C.D.8.的相反數(shù)是()A.2 B.﹣2 C.4 D.﹣9.如圖是根據(jù)我市某天七個整點時的氣溫繪制成的統(tǒng)計圖,則這七個整點時氣溫的中位數(shù)和平均數(shù)分別是()A.30,28B.26,26C.31,30D.26,2210.已知一次函數(shù)y=kx+b的大致圖象如圖所示,則關(guān)于x的一元二次方程x2﹣2x+kb+1=0的根的情況是()A.有兩個不相等的實數(shù)根 B.沒有實數(shù)根C.有兩個相等的實數(shù)根 D.有一個根是011.如圖,將甲、乙、丙、丁四個小正方形中的一個剪掉,使余下的部分不能圍成一個正方體,剪掉的這個小正方形是A.甲 B.乙C.丙 D.丁12.如圖,正方形ABCD中,對角線AC、BD交于點O,∠BAC的平分線交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,連接GE、GF,以下結(jié)論:①△OAE≌△OBG;②四邊形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正確的有()個.A.2 B.3 C.4 D.5二、填空題:(本大題共6個小題,每小題4分,共24分.)13.正十二邊形每個內(nèi)角的度數(shù)為.14.不等式組的解集是_____________.15.如圖是一組有規(guī)律的圖案,圖案1是由4個組成的,圖案2是由7個組成的,那么圖案5是由個組成的,依此,第n個圖案是由個組成的.16.如圖,校園內(nèi)有一棵與地面垂直的樹,數(shù)學(xué)興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_(dá)____________米(結(jié)果保留根號).17.在由乙猜甲剛才想的數(shù)字游戲中,把乙猜的數(shù)字記為b且,a,b是0,1,2,3四個數(shù)中的其中某一個,若|a﹣b|≤1則稱甲乙”心有靈犀”.現(xiàn)任意找兩個人玩這個游戲,得出他們”心有靈犀”的概率為_____.18.化簡:x2-4x+4x三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖像交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖像于點M,交AB于點N,連接BM.(1)求m的值和反比例函數(shù)的表達(dá)式;(2)直線y=n沿y軸方向平移,當(dāng)n為何值時,△BMN的面積最大?20.(6分)如圖,AB是⊙O的直徑,D為⊙O上一點,過弧BD上一點T作⊙O的切線TC,且TC⊥AD于點C.(1)若∠DAB=50°,求∠ATC的度數(shù);(2)若⊙O半徑為2,TC=3,求AD的長.21.(6分)如圖1,已知∠DAC=90°,△ABC是等邊三角形,點P為射線AD上任意一點(點P與點A不重合),連結(jié)CP,將線段CP繞點C順時針旋轉(zhuǎn)60°得到線段CQ,連結(jié)QB并延長交直線AD于點E.(1)如圖1,猜想∠QEP=°;(2)如圖2,3,若當(dāng)∠DAC是銳角或鈍角時,其它條件不變,猜想∠QEP的度數(shù),選取一種情況加以證明;(3)如圖3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的長.22.(8分)如圖,已知點B、E、C、F在一條直線上,AB=DF,AC=DE,∠A=∠D求證:AC∥DE;若BF=13,EC=5,求BC的長.23.(8分)如圖,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,已知OA=100米,山坡坡度(豎直高度與水平寬度的比)i=1:2,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置點P的鉛直高度.(測傾器高度忽略不計,結(jié)果保留根號形式)24.(10分)如圖,AB是⊙O的直徑,D是⊙O上一點,點E是AC的中點,過點A作⊙O的切線交BD的延長線于點F.連接AE并延長交BF于點C.(1)求證:AB=BC;(2)如果AB=5,tan∠FAC=,求FC的長.25.(10分)如圖①,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起(點A與點E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點.

如圖②,若整個△EFG從圖①的位置出發(fā),以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點P從△EFG的頂點G出發(fā),以1cm/s的速度在直角邊GF上向點F運(yùn)動,當(dāng)點P到達(dá)點F時,點P停止運(yùn)動,△EFG也隨之停止平移.設(shè)運(yùn)動時間為x(s),F(xiàn)G的延長線交AC于H,四邊形OAHP的面積為y(cm2)(不考慮點P與G、F重合的情況).

(1)當(dāng)x為何值時,OP∥AC;

(2)求y與x之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍;

(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說明理由.(參考數(shù)據(jù):1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)26.(12分)在平面直角坐標(biāo)系xOy中,拋物線y=12x(1)求直線BC的解析式;(2)點D在拋物線上,且點D的橫坐標(biāo)為1.將拋物線在點A,D之間的部分(包含點A,D)記為圖象G,若圖象G向下平移t(t>0)個單位后與直線BC只有一個公共點,求t的取值范圍.27.(12分)已知:四邊形ABCD是平行四邊形,點O是對角線AC、BD的交點,EF過點O且與AB、CD分別相交于點E、F,連接EC、AF.(1)求證:DF=EB;(2)AF與圖中哪條線段平行?請指出,并說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】分析:根據(jù)分式有意義的條件進(jìn)行求解即可.詳解:由題意得,x﹣3≠0,解得,x≠3,故選D.點睛:此題考查了分式有意義的條件.注意:分式有意義的條件事分母不等于零,分式無意義的條件是分母等于零.2、A【解析】試題分析:觀察圖形可知,該幾何體的主視圖是.故選A.考點:簡單組合體的三視圖.3、A【解析】分析:依據(jù)四邊形ABCD是平行四邊形,即可得到BD經(jīng)過點O,依據(jù)B的坐標(biāo)為(﹣2,﹣2),即可得出D的坐標(biāo)為(2,2).詳解:∵點A,C的坐標(biāo)分別為(﹣5,2),(5,﹣2),∴點O是AC的中點,∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形,∴BD經(jīng)過點O,∵B的坐標(biāo)為(﹣2,﹣2),∴D的坐標(biāo)為(2,2),故選A.點睛:本題主要考查了坐標(biāo)與圖形變化,圖形或點旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點的坐標(biāo).4、B【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】將4670000用科學(xué)記數(shù)法表示為4.67×106,故選B.【點睛】本題考查了科學(xué)記數(shù)法—表示較大的數(shù),解題的關(guān)鍵是掌握科學(xué)記數(shù)法的概念進(jìn)行解答.5、C【解析】

直接利用有理數(shù)的除法運(yùn)算法則計算得出答案.【詳解】解:(-18)÷9=-1.

故選:C.【點睛】此題主要考查了有理數(shù)的除法運(yùn)算,正確掌握運(yùn)算法則是解題關(guān)鍵.6、B【解析】

根據(jù)一元二次方程的定義和一元二次方程的解的定義得出:a﹣1≠0,a2﹣1=0,求出a的值即可.【詳解】解:把x=0代入方程得:a2﹣1=0,解得:a=±1,∵(a﹣1)x2+x+a2﹣1=0是關(guān)于x的一元二次方程,∴a﹣1≠0,即a≠1,∴a的值是﹣1.故選:B.【點睛】本題考查了對一元二次方程的定義,一元二次方程的解等知識點的理解和運(yùn)用,注意根據(jù)已知得出a﹣1≠0,a2﹣1=0,不要漏掉對一元二次方程二次項系數(shù)不為0的考慮.7、A【解析】

先確定拋物線y=x2的頂點坐標(biāo)為(0,0),再根據(jù)點平移的規(guī)律得到點(0,0)平移后所得對應(yīng)點的坐標(biāo)為(-2,-1),然后根據(jù)頂點式寫出平移后的拋物線解析式.【詳解】拋物線y=x2的頂點坐標(biāo)為(0,0),把點(0,0)向左平移1個單位,再向下平移2個單位長度所得對應(yīng)點的坐標(biāo)為(-2,-1),所以平移后的拋物線解析式為y=(x+2)2-1.

故選A.8、A【解析】分析:根據(jù)只有符號不同的兩個數(shù)是互為相反數(shù)解答即可.詳解:的相反數(shù)是,即2.故選A.點睛:本題考查了相反數(shù)的定義,解答本題的關(guān)鍵是熟練掌握相反數(shù)的定義,正數(shù)的相反數(shù)是負(fù)數(shù),0的相反數(shù)是0,負(fù)數(shù)的相反數(shù)是正數(shù).9、B.【解析】試題分析:由圖可知,把7個數(shù)據(jù)從小到大排列為22,22,23,1,28,30,31,中位數(shù)是第4位數(shù),第4位是1,所以中位數(shù)是1.平均數(shù)是(22×2+23+1+28+30+31)÷7=1,所以平均數(shù)是1.故選B.考點:中位數(shù);加權(quán)平均數(shù).10、A【解析】

判斷根的情況,只要看根的判別式△=b2?4ac的值的符號就可以了.【詳解】∵一次函數(shù)y=kx+b的圖像經(jīng)過第一、三、四象限∴k>0,b<0∴△=b2?4ac=(-2)2-4(kb+1)=-4kb>0,∴方程x2﹣2x+kb+1=0有兩個不等的實數(shù)根,故選A.【點睛】根的判別式11、D【解析】解:將如圖所示的圖形剪去一個小正方形,使余下的部分不能圍成一個正方體,編號為甲乙丙丁的小正方形中剪去的是?。蔬xD.12、C【解析】

根據(jù)AF是∠BAC的平分線,BH⊥AF,可證AF為BG的垂直平分線,然后再根據(jù)正方形內(nèi)角及角平分線進(jìn)行角度轉(zhuǎn)換證明EG=EB,F(xiàn)G=FB,即可判定②選項;設(shè)OA=OB=OC=a,菱形BEGF的邊長為b,由四邊形BEGF是菱形轉(zhuǎn)換得到CF=GF=BF,由四邊形ABCD是正方形和角度轉(zhuǎn)換證明△OAE≌△OBG,即可判定①;則△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的關(guān)系式,再由△PGC∽△BGA,得到=1+,從而判斷得出④;得出∠EAB=∠GBC從而證明△EAB≌△GBC,即可判定③;證明△FAB≌△PBC得到BF=CP,即可求出,從而判斷⑤.【詳解】解:∵AF是∠BAC的平分線,∴∠GAH=∠BAH,∵BH⊥AF,∴∠AHG=∠AHB=90°,在△AHG和△AHB中,∴△AHG≌△AHB(ASA),∴GH=BH,∴AF是線段BG的垂直平分線,∴EG=EB,F(xiàn)G=FB,∵四邊形ABCD是正方形,∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四邊形BEGF是菱形;②正確;設(shè)OA=OB=OC=a,菱形BEGF的邊長為b,∵四邊形BEGF是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,∠CGF=90°,∴CF=GF=BF,∵四邊形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°,∵BH⊥AF,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠OAE=∠OBG,在△OAE和△OBG中,∴△OAE≌△OBG(ASA),①正確;∴OG=OE=a﹣b,∴△GOE是等腰直角三角形,∴GE=OG,∴b=(a﹣b),整理得a=b,∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,∵四邊形ABCD是正方形,∴PC∥AB,∴===1+,∵△OAE≌△OBG,∴AE=BG,∴=1+,∴==1﹣,④正確;∵∠OAE=∠OBG,∠CAB=∠DBC=45°,∴∠EAB=∠GBC,在△EAB和△GBC中,∴△EAB≌△GBC(ASA),∴BE=CG,③正確;在△FAB和△PBC中,∴△FAB≌△PBC(ASA),∴BF=CP,∴====,⑤錯誤;綜上所述,正確的有4個,故選:C.【點睛】本題綜合考查了全等三角形的判定與性質(zhì),相似三角形,菱形的判定與性質(zhì)等四邊形的綜合題.該題難度較大,需要學(xué)生對有關(guān)于四邊形的性質(zhì)的知識有一系統(tǒng)的掌握.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

首先求得每個外角的度數(shù),然后根據(jù)外角與相鄰的內(nèi)角互為鄰補(bǔ)角即可求解.【詳解】試題分析:正十二邊形的每個外角的度數(shù)是:=30°,則每一個內(nèi)角的度數(shù)是:180°﹣30°=150°.故答案為150°.14、x<-1【解析】解不等式①得:x<5,解不等式②得:x<-1所以不等式組的解集是x<-1.故答案是:x<-1.15、16,3n+1.【解析】

觀察不難發(fā)現(xiàn),后一個圖案比前一個圖案多3個基礎(chǔ)圖形,然后寫出第5個和第n個圖案的基礎(chǔ)圖形的個數(shù)即可.【詳解】由圖可得,第1個圖案基礎(chǔ)圖形的個數(shù)為4,第2個圖案基礎(chǔ)圖形的個數(shù)為7,7=4+3,第3個圖案基礎(chǔ)圖形的個數(shù)為10,10=4+3×2,…,第5個圖案基礎(chǔ)圖形的個數(shù)為4+3(5?1)=16,第n個圖案基礎(chǔ)圖形的個數(shù)為4+3(n?1)=3n+1.故答案為16,3n+1.【點睛】本題考查了規(guī)律型:圖形的變化類,根據(jù)圖像發(fā)現(xiàn)規(guī)律是解題的關(guān)鍵.16、【解析】設(shè)出樹高,利用所給角的正切值分別表示出兩次影子的長,然后作差建立方程即可.解:如圖所示,在RtABC中,tan∠ACB=,∴BC=,同理:BD=,∵兩次測量的影長相差8米,∴=8,∴x=4,故答案為4.“點睛”本題考查了平行投影的應(yīng)用,太陽光線下物體影子的長短不僅與物體有關(guān),而且與時間有關(guān),不同時間隨著光線方向的變化,影子的方向也在變化,解此類題,一定要看清方向.解題關(guān)鍵是根據(jù)三角函數(shù)的幾何意義得出各線段的比例關(guān)系,從而得出答案.17、【解析】

利用P(A)=,進(jìn)行計算概率.【詳解】從0,1,2,3四個數(shù)中任取兩個則|a﹣b|≤1的情況有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10種情況,甲乙出現(xiàn)的結(jié)果共有4×4=16,故出他們”心有靈犀”的概率為.故答案是:.【點睛】本題考查了概率的簡單計算能力,是一道列舉法求概率的問題,屬于基礎(chǔ)題,可以直接應(yīng)用求概率的公式.18、﹣x-2x【解析】

直接利用分式的混合運(yùn)算法則即可得出.【詳解】原式====-x-2故答案為:-x-2【點睛】此題主要考查了分式的化簡,正確掌握運(yùn)算法則是解題關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)m=8,反比例函數(shù)的表達(dá)式為y=;(2)當(dāng)n=3時,△BMN的面積最大.【解析】

(1)求出點A的坐標(biāo),利用待定系數(shù)法即可解決問題;(2)構(gòu)造二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題.【詳解】解:(1)∵直線y=2x+6經(jīng)過點A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函數(shù)經(jīng)過點A(1,8),∴8=,∴k=8,∴反比例函數(shù)的解析式為y=.(2)由題意,點M,N的坐標(biāo)為M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3時,△BMN的面積最大.20、(2)65°;(2)2.【解析】試題分析:(2)連接OT,根據(jù)角平分線的性質(zhì),以及直角三角形的兩個銳角互余,證得CT⊥OT,CT為⊙O的切線;(2)證明四邊形OTCE為矩形,求得OE的長,在直角△OAE中,利用勾股定理即可求解.試題解析:(2)連接OT,∵OA=OT,∴∠OAT=∠OTA,又∵AT平分∠BAD,∴∠DAT=∠OAT,∴∠DAT=∠OTA,∴OT∥AC,又∵CT⊥AC,∴CT⊥OT,∴CT為⊙O的切線;(2)過O作OE⊥AD于E,則E為AD中點,又∵CT⊥AC,∴OE∥CT,∴四邊形OTCE為矩形,∵CT=,∴OE=,又∵OA=2,∴在Rt△OAE中,AE=,∴AD=2AE=2.考點:2.切線的判定與性質(zhì);2.勾股定理;3.圓周角定理.21、(1)∠QEP=60°;(2)∠QEP=60°,證明詳見解析;(3)【解析】

(1)如圖1,先根據(jù)旋轉(zhuǎn)的性質(zhì)和等邊三角形的性質(zhì)得出∠PCA=∠QCB,進(jìn)而可利用SAS證明△CQB≌△CPA,進(jìn)而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的內(nèi)角和定理即可求得∠QEP=∠QCP,從而完成猜想;(2)以∠DAC是銳角為例,如圖2,仿(1)的證明思路利用SAS證明△ACP≌△BCQ,可得∠APC=∠Q,進(jìn)一步即可證得結(jié)論;(3)仿(2)可證明△ACP≌△BCQ,于是AP=BQ,再求出AP的長即可,作CH⊥AD于H,如圖3,易證∠APC=30°,△ACH為等腰直角三角形,由AC=4可求得CH、PH的長,于是AP可得,問題即得解決.【詳解】解:(1)∠QEP=60°;證明:連接PQ,如圖1,由題意得:PC=CQ,且∠PCQ=60°,∵△ABC是等邊三角形,∴∠ACB=60°,∴∠PCA=∠QCB,則在△CPA和△CQB中,,∴△CQB≌△CPA(SAS),∴∠CQB=∠CPA,又因為△PEM和△CQM中,∠EMP=∠CMQ,∴∠QEP=∠QCP=60°.故答案為60;(2)∠QEP=60°.以∠DAC是銳角為例.證明:如圖2,∵△ABC是等邊三角形,∴AC=BC,∠ACB=60°,∵線段CP繞點C順時針旋轉(zhuǎn)60°得到線段CQ,∴CP=CQ,∠PCQ=60°,∴∠ACB+∠BCP=∠BCP+∠PCQ,即∠ACP=∠BCQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴∠APC=∠Q,∵∠1=∠2,∴∠QEP=∠PCQ=60°;

(3)連結(jié)CQ,作CH⊥AD于H,如圖3,與(2)一樣可證明△ACP≌△BCQ,∴AP=BQ,∵∠DAC=135°,∠ACP=15°,∴∠APC=30°,∠CAH=45°,∴△ACH為等腰直角三角形,∴AH=CH=AC=×4=,在Rt△PHC中,PH=CH=,∴PA=PH?AH=-,∴BQ=?.【點睛】本題考查了等邊三角形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)和有關(guān)計算、30°角的直角三角形的性質(zhì)等知識,涉及的知識點多、綜合性強(qiáng),靈活應(yīng)用全等三角形的判定和性質(zhì)、熟練掌握旋轉(zhuǎn)的性質(zhì)和相關(guān)圖形的性質(zhì)是解題的關(guān)鍵.22、(1)證明見解析;(2)4.【解析】

(1)首先證明△ABC≌△DFE可得∠ACE=∠DEF,進(jìn)而可得AC∥DE;(2)根據(jù)△ABC≌△DFE可得BC=EF,利用等式的性質(zhì)可得EB=CF,再由BF=13,EC=5進(jìn)而可得EB的長,然后可得答案.【詳解】解:(1)在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB=4,∴CB=4+5=1.【點睛】考點:全等三角形的判定與性質(zhì).23、電視塔高為米,點的鉛直高度為(米).【解析】

過點P作PF⊥OC,垂足為F,在Rt△OAC中利用三角函數(shù)求出OC=100,根據(jù)山坡坡度=1:2表示出PB=x,AB=2x,在Rt△PCF中利用三角函數(shù)即可求解.【詳解】過點P作PF⊥OC,垂足為F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA?tan∠OAC=100(米),過點P作PB⊥OA,垂足為B.由i=1:2,設(shè)PB=x,則AB=2x.∴PF=OB=100+2x,CF=100﹣x.在Rt△PCF中,由∠CPF=45°,∴PF=CF,即100+2x=100﹣x,∴x=,即PB=米.【點睛】本題考查了特殊的直角三角形,三角函數(shù)的實際應(yīng)用,中等難度,作出輔助線構(gòu)造直角三角形并熟練應(yīng)用三角函數(shù)是解題關(guān)鍵.24、(1)見解析;(2).【解析】分析:(1)由AB是直徑可得BE⊥AC,點E為AC的中點,可知BE垂直平分線段AC,從而結(jié)論可證;(2)由∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,可得∠FAC=∠ABE,從而可設(shè)AE=x,BE=2x,由勾股定理求出AE、BE、AC的長.作CH⊥AF于H,可證Rt△ACH∽Rt△BAC,列比例式求出HC、AH的值,再根據(jù)平行線分線段成比例求出FH,然后利用勾股定理求出FC的值.詳解:(1)證明:連接BE.∵AB是⊙O的直徑,∴∠AEB=90°,∴BE⊥AC,而點E為AC的中點,∴BE垂直平分AC,∴BA=BC;(2)解:∵AF為切線,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan∠ABE=∠FAC=,在Rt△ABE中,tan∠ABE==,設(shè)AE=x,則BE=2x,∴AB=x,即x=5,解得x=,∴AC=2AE=2,BE=2作CH⊥AF于H,如圖,∵∠HAC=∠ABE,∴Rt△ACH∽Rt△BAC,∴==,即==,∴HC=2,AH=4,∵HC∥AB,∴=,即=,解得FH=在Rt△FHC中,F(xiàn)C==.點睛:本題考查了圓周角定理的推論,線段垂直平分線的判定與性質(zhì),切線的性質(zhì),勾股定理,相似三角形的判定與性質(zhì),平行線分線段成比例定理,銳角三角函數(shù)等知識點及見比設(shè)參的數(shù)學(xué)思想,得到BE垂直平分AC是解(1)的關(guān)鍵,得到Rt△ACH∽Rt△BAC是解(2)的關(guān)鍵.25、(1)1.5s;(2)S=x2+x+3(0<x<3);(3)當(dāng)x=(s)時,四邊形OAHP面積與△ABC面積的比為13:1.【解析】

(1)由于O是EF中點,因此當(dāng)P為FG中點時,OP∥EG∥AC,據(jù)此可求出x的值.(2)由于四邊形AHPO形狀不規(guī)則,可根據(jù)三角形AFH和三角形OPF的面積差來得出四邊形AHPO的面積.三角形AHF中,AH的長可用AF的長和∠FAH的余弦值求出,同理可求出FH的表達(dá)式(也可用相似三角形來得出AH、FH的長).三角形OFP中,可過O作OD⊥FP于D,PF的長易知,而OD的長,可根據(jù)OF的長和∠FOD的余弦值得出.由此可求得y、x的函數(shù)關(guān)系式.(3)先求出三角形ABC和四邊形OAHP的面積,然后將其代入(2)的函數(shù)式中即可得出x的值.【詳解】解:(1)∵Rt△EFG∽Rt△ABC∴,即,∴FG==3cm∵當(dāng)P為FG的中點時,OP∥EG,EG∥AC∴OP∥AC∴x==×3=1.5(s)∴當(dāng)x為1.5s時,OP∥AC.(2)在Rt△EFG中,由勾股定理得EF=5cm∵EG∥AH∴△EFG∽△AFH∴,∴AH=(x+5),F(xiàn)H=(x+5)過點O作OD⊥FP,垂足為D∵點O為EF中點∴OD=EG=2cm∵FP=3﹣x∴S四邊形OAHP=S△AFH﹣S△OFP=?AH?FH﹣?OD?FP=?(x+5)?(x+5)﹣×2×(3﹣x)=x2+x+3(0<x<3).(3)假設(shè)存在某一時刻x,使得四邊形OAHP面積與△ABC面積的比為13:1則S四邊形OAHP=×S△ABC∴x2+x+3=××6×8∴6x2+85x﹣250=0解得x1=,x2=﹣(舍去)∵0<x<3∴當(dāng)x=(s)時,四邊形OAHP面積與△ABC面積的比為13:1.【點睛】本題是比較常規(guī)的動態(tài)幾何壓軸題,第1小題運(yùn)用相似形的知識容易解決,第2小題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論