版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
題型五圓的相關(guān)證明與計算類型一圓的基本性質(zhì)證明與計算(專題訓(xùn)練)1.如圖,SKIPIF1<0是SKIPIF1<0的外接圓,SKIPIF1<0,若SKIPIF1<0的半徑SKIPIF1<0為2,則弦SKIPIF1<0的長為()A.4 B.SKIPIF1<0 C.3 D.SKIPIF1<0【答案】B【分析】過點SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0,根據(jù)圓周角定理以及垂徑定理可得結(jié)果.【詳解】解:過點SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的外接圓,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故選:SKIPIF1<0.【點睛】本題考查了垂徑定理,圓周角定理,勾股定理,熟知相關(guān)性質(zhì)定理是解本題的關(guān)鍵.2.如圖,SKIPIF1<0是SKIPIF1<0的內(nèi)接三角形,SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的長是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】過點SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,根據(jù)垂徑定理求出SKIPIF1<0,根據(jù)圓周角定理求出SKIPIF1<0,根據(jù)正弦的定義求出SKIPIF1<0,根據(jù)弧長公式計算求解.【詳解】解:過點SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,則SKIPIF1<0,由圓周角定理得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,故選:SKIPIF1<0.【點睛】本題考查的是三角形的外接圓與外心,掌握垂徑定理、圓周角定理、弧長公式是解題的關(guān)鍵.3.設(shè)圓錐的底面圓半徑為r,圓錐的母線長為l,滿足2r+l=6,這樣的圓錐的側(cè)面積()A.有最大值SKIPIF1<0π B.有最小值SKIPIF1<0π C.有最大值SKIPIF1<0π D.有最小值SKIPIF1<0π【答案】C【分析】由2r+l=6,得出l=6﹣2r,代入圓錐的側(cè)面積公式:S側(cè)=πrl,利用配方法整理得出,S側(cè)=﹣2π(r﹣SKIPIF1<0)2+SKIPIF1<0π,再根據(jù)二次函數(shù)的性質(zhì)即可求解.【詳解】解:∵2r+l=6,∴l(xiāng)=6﹣2r,∴圓錐的側(cè)面積S側(cè)=πrl=πr(6﹣2r)=﹣2π(r2﹣3r)=﹣2π[(r﹣SKIPIF1<0)2﹣SKIPIF1<0]=﹣2π(r﹣SKIPIF1<0)2+SKIPIF1<0π,∴當(dāng)r=SKIPIF1<0時,S側(cè)有最大值SKIPIF1<0.故選:C.【點睛】本題考查了圓錐的計算,二次函數(shù)的最值,圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.熟記圓錐的側(cè)面積:SKIPIF1<0是解題的關(guān)鍵.4.如圖,AB為SKIPIF1<0的直徑,C,D為SKIPIF1<0上的兩點,若SKIPIF1<0,則SKIPIF1<0的度數(shù)為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】連接AD,如圖,根據(jù)圓周角定理得到SKIPIF1<0,SKIPIF1<0,然后利用互余計算出SKIPIF1<0,從而得到SKIPIF1<0的度數(shù).【詳解】解:連接AD,如圖,SKIPIF1<0AB為SKIPIF1<0的直徑,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選B.【點睛】本題主要考查了同弦所對的圓周角相等,直徑所對的圓周角是直角,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進行求解.5.如圖,SKIPIF1<0是SKIPIF1<0的外接圓,CD是SKIPIF1<0的直徑.若SKIPIF1<0,弦SKIPIF1<0,則SKIPIF1<0的值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】連接AD,根據(jù)直徑所對的圓周角等于90°和勾股定理,可以求得AD的長,然后即可求得∠ADC的余弦值,再根據(jù)同弧所對的圓周角相等,可以得到∠ABC=∠ADC,從而可以得到cos∠ABC的值.【詳解】解:連接AD,如右圖所示,∵CD是⊙O的直徑,CD=10,弦AC=6,∴∠DAC=90°,∴AD=SKIPIF1<0=8,∴cos∠ADC=SKIPIF1<0=SKIPIF1<0,∵∠ABC=∠ADC,∴cos∠ABC的值為SKIPIF1<0,故選:A.【點睛】本題考查三角形的外接圓與外心、圓周角、銳角三角函數(shù)、勾股定理,解答本題的關(guān)鍵是求出cos∠ADC的值,利用數(shù)形結(jié)合的思想解答.6.如圖,AB是⊙O的弦,且AB=6,點C是弧AB中點,點D是優(yōu)弧AB上的一點,∠ADC=30°,則圓心O到弦AB的距離等于()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】連接OA,AC,OC,OC交AB于E,先根據(jù)垂徑定理求出AE=3,然后證明三角形OAC是等邊三角形,從而可以得到∠OAE=30°,再利用三線合一定理求解即可.【詳解】解:如圖所示,連接OA,AC,OC,OC交AB于E,∵C是弧AB的中點,AB=6,∴OC⊥AB,AE=BE=3,∵∠ADC=30°,∴∠AOC=2∠ADC=60°,又∵OA=OC,∴△OAC是等邊三角形,∵OC⊥AB,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0∴圓心O到弦AB的距離為SKIPIF1<0,故選C.【點睛】本題主要考查了圓周角與圓心角的關(guān)系,等邊三角形的性質(zhì)與判定,勾股定理,垂徑定理,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進行求解.7.如圖,∠BAC=36°,點O在邊AB上,⊙O與邊AC相切于點D,交邊AB于點E,F(xiàn),連接FD,則∠AFD等于()A.27° B.29° C.35° D.37°【答案】A【分析】連接OD,根據(jù)切線的性質(zhì)得到∠ADO=90°,根據(jù)直角三角形的性質(zhì)得到∠AOD=90°﹣36°=54°,根據(jù)圓周角定理即可得到結(jié)論.【詳解】解:連接OD,∵⊙O與邊AC相切于點D,∴∠ADO=90°,∵∠BAC=36°,∴∠AOD=90°﹣36°=54°,∴SKIPIF1<0,故選:A.【點睛】本題考查了切線的性質(zhì),圓周角定理,正確的作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.8.如圖,點C是以點O為圓心,AB為直徑的半圓上一點,連接AC,BC,OC.若AC=4,BC=3,則sin∠BOC的值是()A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】如圖,過點C作CH⊥AB于H.利用勾股定理求出AB,再利用面積法求出CH,可得結(jié)論.【詳解】解:如圖,過點C作CH⊥AB于H.
∵AB是直徑,
∴∠ACB=90°,
∵AC=4,BC=3,
∴AB=SKIPIF1<0,
∴OC=SKIPIF1<0AB=SKIPIF1<0,
∵SKIPIF1<0=SKIPIF1<0?AB?CH=SKIPIF1<0?AC?BC,
∴CH=SKIPIF1<0,
∴sin∠BOC=SKIPIF1<0=SKIPIF1<0,
故選:B.【點睛】本題考查圓周角定理,解直角三角形等知識,解題的關(guān)鍵是學(xué)會利用面積法求出CH的長,屬于中考??碱}型.9.如圖,AB是⊙O的直徑,點C是⊙O上一點,連接AC,BC,則∠C的度數(shù)是()A.60° B.90° C.120° D.150°【答案】B【分析】直接根據(jù)直徑所對的圓周角是直角進行判斷即可.【詳解】解:∵AB是⊙O的直徑,點C是⊙O上一點,∴∠C=90°故選:B【點睛】此題主要考查了:半圓(或直徑)所對的圓周角是直角,靈活掌握半圓(或直徑)所對的圓周角是直角是解答此題的關(guān)鍵.10.如圖,SKIPIF1<0是⊙O的直徑,點SKIPIF1<0、SKIPIF1<0在⊙O上,SKIPIF1<0,則SKIPIF1<0的大小為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】根據(jù)同弧所對的圓心角等于圓周角的2倍得到∠BOC=2∠BDC=40°,即可求出答案.【詳解】∵SKIPIF1<0,∴∠BOC=2∠BDC=40°,∴∠AOC=180°-∠BOC=140°,故選:B.【點睛】此題考查了圓周角定理:同弧所對的圓心角等于圓周角的2倍,鄰補角的定義.11.如圖,SKIPIF1<0內(nèi)接于圓,SKIPIF1<0,過點SKIPIF1<0的切線交SKIPIF1<0的延長線于點SKIPIF1<0.則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】連接OC,根據(jù)切線的性質(zhì)得出∠OCP=90°,再由∠P=28°得出∠COP,最后根據(jù)外角的性質(zhì)得出∠CAB.【詳解】解:連接OC,∵CP與圓O相切,∴OC⊥CP,∵∠ACB=90°,∴AB為直徑,∵∠P=28°,∴∠COP=180°-90°-28°=62°,而OC=OA,∴∠OCA=∠OAC=2∠CAB=∠COP,即∠CAB=31°,故選B.【點睛】本題考查了切線的性質(zhì),三角形內(nèi)角和,外角,解題的關(guān)鍵是根據(jù)切線的性質(zhì)得出∠COP.12.如圖,已知SKIPIF1<0是SKIPIF1<0的直徑,SKIPIF1<0是弦,若SKIPIF1<0則SKIPIF1<0等于()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】先由圓周角定理得到∠DAB=∠BCD=36°,然后根據(jù)SKIPIF1<0是SKIPIF1<0的直徑確定∠ADB=90°,最后根據(jù)直角三角形兩銳角互余即可解答.【詳解】解:∵SKIPIF1<0是弦,若SKIPIF1<0∴∠DAB=∠BCD=36°∵SKIPIF1<0是SKIPIF1<0的直徑∴∠ADB=90°∴∠ABD=90°-∠DAB=54°.故選:A.【點睛】本題考查了圓周角定理和直角三角形的性質(zhì),靈活利用圓周角定理是解答本題的關(guān)鍵.13.如圖,SKIPIF1<0是圓SKIPIF1<0上一點,SKIPIF1<0是直徑,SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0在圓SKIPIF1<0上且平分弧SKIPIF1<0,則SKIPIF1<0的長為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】由SKIPIF1<0是圓O的直徑,可得∠A=∠D=90°,又SKIPIF1<0在圓SKIPIF1<0上且平分弧SKIPIF1<0,則∠CBD=∠BCD=45°,即△BCD是等腰直角三角形.在Rt△ABC中,根據(jù)勾股定理求出BC長,從而可求DC的長.【詳解】解:∵SKIPIF1<0是圓O的直徑,∴∠A=∠D=90°.又SKIPIF1<0在圓SKIPIF1<0上且平分弧SKIPIF1<0,∴∠CBD=∠BCD=45°,即△BCD是等腰直角三角形.在Rt△ABC中,SKIPIF1<0,SKIPIF1<0,根據(jù)勾股定理,得BC=SKIPIF1<0=2SKIPIF1<0.∵△BCD是等腰直角三角形,∴CD=SKIPIF1<0=SKIPIF1<0.故選:D.【點睛】此題考查了圓周角定理,等腰直角三角形的性質(zhì)和勾股定理.此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.14.如圖,四邊形SKIPIF1<0的外接圓為⊙SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的度數(shù)為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】根據(jù)同弧所對的圓周角相等及等邊對等角,可得SKIPIF1<0,根據(jù)三角形的內(nèi)角和可得SKIPIF1<0,利用角的和差運算即可求解.【詳解】解:∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故選:C.【點睛】本題考查同弧所對的圓周角相等、三角形的內(nèi)角和、等邊對等角,熟練應(yīng)用幾何知識是解題的關(guān)鍵.15.在SKIPIF1<0中,直徑AB=15,弦DE⊥AB于點C.若OC:OB=3:5,則DE的長為()A.6 B.9 C.12 D.15【答案】C【解析】【分析】根據(jù)題意畫出圖形,然后利用垂徑定理和勾股定理解答即可.【詳解】解:如圖所示:∵直徑AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO=4.5,∵DE⊥AB,∴DC=SKIPIF1<0=6,∴DE=2DC=12.故選:C.【點睛】此題主要考查了垂徑定理和勾股定理,屬于??碱}型,正確得出CO的長、熟練掌握上述知識是解題關(guān)鍵.16.如圖,SKIPIF1<0是SKIPIF1<0的半徑,過點SKIPIF1<0作SKIPIF1<0的切線SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別交SKIPIF1<0于點SKIPIF1<0,SKIPIF1<0,求證:SKIPIF1<0【答案】見解析【解析】【分析】首先得出SKIPIF1<0,推出OA=OB,再利用OA-OC=OB-OD得出結(jié)果即可.【詳解】解:∵AB是⊙O的切線,∴SKIPIF1<0,∵MA=MB,OM=OM,∴SKIPIF1<0,∴OA=OB,∵OC,OD都是⊙O的半徑,∴OC=OD,∴OA-OC=OB-OD,即AC=BD.【點睛】本題考查了切線的性質(zhì)及全等三角形的判定,解題的關(guān)鍵是熟練掌握三角形全等的判定.17.如圖,在SKIPIF1<0中,以SKIPIF1<0為直徑的SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0弦SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0且SKIPIF1<0SKIPIF1<0SKIPIF1<0.(1)求證:SKIPIF1<0是SKIPIF1<0的切線;(2)求SKIPIF1<0的直徑SKIPIF1<0的長度.【答案】(1)見解析;(2)SKIPIF1<0的直徑SKIPIF1<0的長度為SKIPIF1<0【解析】【分析】(1)先用勾股定理的逆定理證明△AEM為直角三角形,且∠AEM=90°,再根據(jù)MN∥BC即可證明∠ABC=90°進而求解;(2)連接BM,由AB是直徑得到∠AMB=90°,再分別在Rt△AMB和Rt△AEM中使用∠A的余弦即可求解.【詳解】解:(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0為SKIPIF1<0的直徑,SKIPIF1<0是SKIPIF1<0的切線.(2)如圖,連接SKIPIF1<0
SKIPIF1<0為SKIPIF1<0的直徑,SKIPIF1<0又SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0的直徑SKIPIF1<0的長度為SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】本題考查了圓中切線的證明,圓周角定理,直角三角形中銳角的三角函數(shù)的求法,熟練掌握切線的性質(zhì)和判定及銳角三角函數(shù)的定義是解決此類題的關(guān)鍵.18.如圖,圓SKIPIF1<0是SKIPIF1<0的外接圓,其切線SKIPIF1<0與直徑SKIPIF1<0的延長線相交于點SKIPIF1<0,且SKIPIF1<0.(1)求SKIPIF1<0的度數(shù);(2)若SKIPIF1<0,求圓SKIPIF1<0的半徑.【答案】(1)SKIPIF1<0的度數(shù)為SKIPIF1<0;(2)圓O的半徑為2.【解析】【分析】(1)如圖(見解析),設(shè)SKIPIF1<0,先根據(jù)等腰三角形的性質(zhì)得出SKIPIF1<0,再根據(jù)圓的性質(zhì)可得SKIPIF1<0,從而可得SKIPIF1<0,然后根據(jù)圓的切線的性質(zhì)可得SKIPIF1<0,又根據(jù)三角形的內(nèi)角和定理可求出x的值,從而可得SKIPIF1<0的度數(shù),最后根據(jù)圓周角定理即可得;(2)如圖(見解析),設(shè)圓O的半徑為SKIPIF1<0,先根據(jù)圓周角定理得出SKIPIF1<0,再根據(jù)直角三角形的性質(zhì)可得SKIPIF1<0,從而可得SKIPIF1<0,然后在SKIPIF1<0中,利用勾股定理求解即可得.【詳解】(1)如圖,連接OA設(shè)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0AE是圓O的切線SKIPIF1<0,即SKIPIF1<0SKIPIF1<0在SKIPIF1<0中,由三角形的內(nèi)角和定理得:SKIPIF1<0即SKIPIF1<0解得SKIPIF1<0SKIPIF1<0則由圓周角定理得:SKIPIF1<0故SKIPIF1<0的度數(shù)為SKIPIF1<0;(2)如圖,連接AD設(shè)圓O的半徑為SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0BD是圓O的直徑SKIPIF1<0由(1)可知,SKIPIF1<0則在SKIPIF1<0中,SKIPIF1<0SKIPIF1<0在SKIPIF1<0中,由勾股定理得:SKIPIF1<0,即SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0(不符題意,舍去)則圓O的半徑為2.【點睛】本題考查了圓周角定理、圓的切線的性質(zhì)、等腰三角形的性質(zhì)、勾股定理等知識點,較難的是題(2),通過作輔助線,利用圓周角定理是解題關(guān)鍵.19.如圖,在SKIPIF1<0中,SKIPIF1<0,點SKIPIF1<0為SKIPIF1<0邊上一點,以點SKIPIF1<0為圓心,SKIPIF1<0長為半徑的圓與邊SKIPIF1<0相交于點SKIPIF1<0,連接SKIPIF1<0,當(dāng)SKIPIF1<0為SKIPIF1<
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 住宅小區(qū)全包施工合同
- 機械設(shè)備司機聘用協(xié)議
- 藝術(shù)展覽PVC地板安裝合同
- 銀行大樓屋頂防水改造合同
- 2025農(nóng)村房屋買賣合同正規(guī)模板大全
- 濱海公園綠化沙灘修復(fù)合同
- 高空廣告牌安裝吊籃租賃合同模板
- 食品加工設(shè)備認(rèn)證租賃合同
- 皮革制品業(yè)務(wù)員聘用合同范本
- 保齡球館裝修施工合同范本
- 災(zāi)難事故避險自救-終結(jié)性考核-國開(SC)-參考資料
- 2024年秋季新人教版八年級上冊物理全冊教案
- 3.1《中國科學(xué)技術(shù)史序言(節(jié)選)》課件
- 獎牌設(shè)計 課件 2024-2025學(xué)年人教版(2024)初中美術(shù)七年級上冊
- 國家開放大學(xué)《Web開發(fā)基礎(chǔ)》形考任務(wù)實驗1-5參考答案
- 小學(xué)語文“跨學(xué)科學(xué)習(xí)任務(wù)群”內(nèi)涵及解讀
- 2024年中考語文復(fù)習(xí)分類必刷:非連續(xù)性文本閱讀(含答案解析)
- 代付業(yè)務(wù)合作協(xié)議
- 大學(xué)英語寫作智慧樹知到期末考試答案章節(jié)答案2024年齊齊哈爾醫(yī)學(xué)院
- 科研設(shè)計及研究生論文撰寫智慧樹知到期末考試答案2024年
- 設(shè)備能力指數(shù)(CMK)計算表
評論
0/150
提交評論