




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
NBERWORKINGPAPERSERIES
TECHIESANDFIRMLEVELPRODUCTIVITY
JamesHarrigan
AriellReshef
FaridToubal
WorkingPaper31341
/papers/w31341
NATIONALBUREAUOFECONOMICRESEARCH
1050MassachusettsAvenue
Cambridge,MA02138
June2023
WethankDaronAcemoglu,MaryAmiti,ZsofiaBarany,EricBartelsman,FloraBellone,AndrewBernard,TiborBesedes,EstherAnnB?ler,DavinChor,ChiaraCriscuolo,JanDeLoecker,AlonEizenberg,GeorgGraetz,GiammarioImpullitti,BeataJavorcik,GuyMichaels,Jean-MarcRobin,andJohnVanReenenforhelpfulcomments.ThepaperbenefitedfromcommentsfromseminarparticipantsatAarhusUniversity,AmericanUniversity,AMSE,BarIlanUniversity,BenGurionUniversity,CREST,DresdenUniversity,GroningenUniversity,FranceStratégie,HebrewUniversity,UniversityofLeMans,LSE,NottinghamUniversity,NewYorkUniversity,SAIS,andtheParisTradeSeminar,aswellasworkshopparticipantsattheCEPR,DEGIT,ENEF,ERWIT,IFN(Stockholm),SETC,andTRISTAN(Dresden).ThisresearchwassupportedbytheBankardFundforPoliticalEconomyattheUniversityofVirginiaandbytheAgenceNationaldelaRechercheundergrantnumbersANR-16-CE60-0001-01andANR-10-EQPX-17(Investissementsd’Avenir).TheviewsexpressedhereinarethoseoftheauthorsanddonotnecessarilyreflecttheviewsoftheNationalBureauofEconomicResearch.
NBERworkingpapersarecirculatedfordiscussionandcommentpurposes.Theyhavenotbeenpeer-reviewedorbeensubjecttothereviewbytheNBERBoardofDirectorsthataccompaniesofficialNBERpublications.
?2023byJamesHarrigan,AriellReshef,andFaridToubal.Allrightsreserved.Shortsectionsoftext,nottoexceedtwoparagraphs,maybequotedwithoutexplicitpermissionprovidedthatfullcredit,including?notice,isgiventothesource.
TechiesandFirmLevelProductivity
JamesHarrigan,AriellReshef,andFaridToubal
NBERWorkingPaperNo.31341
June2023
JELNo.D2,D24,O3,O33
ABSTRACT
Westudytheimpactoftechies—engineersandothertechnicallytrainedworkers—onfirm-levelproductivity.WefirstreportnewfactsontheroleoftechiesinthefirmbyusingFrenchadministrativedataanduniquesurveys.TechiesareSTEM-skillintensiveandareassociatedwithinnovation,aswellaswithtechnologyadoption,management,anddiffusionwithinfirms.Usingstructuraleconometricmethods,weestimatethecausaleffectoftechiesonfirm-levelHicks-neutralproductivityinbothmanufacturingandnon-manufacturingindustries.Wefindthattechiesraisefirm-levelproductivity,andthiseffectgoesbeyondtheemploymentofR&Dworkers,extendingtoICTandothertechies.Innon-manufacturingfirms,theimpactoftechiesonproductivityoperatesmostlythroughICTandothertechies,notR&Dworkers.Engineershaveagreatereffectonproductivitythantechnicians.
JamesHarrigan
DepartmentofEconomics
UniversityofVirginia
P.O.Box400182
Charlottesville,VA22904-4182
andNBER
james.harrigan@
AriellReshef
UniversitéParis1-PanthéonSorbonneMaisondesSciencesEconomiques
106-112Boulevarddel'Hopital
75647ParisCedex13
France
andCNRS,ParisSchoolofEconomics,CEPIIariell.reshef@psemail.eu
FaridToubal
UniversityofParis-Dauphine-PSL
PlaceduMaréchaldeLattredeTassigny75775ParisCedex16
France
andCREST,CEPII
farid.toubal@dauphine.psl.eu
1
1Introduction
Engineersandothertechnicallytrainedworkers(techies)havelongbeenrecognizedasfun-damentalindrivingproductivitygrowth.Forexample,engineersareattheheartofmodernendogenousgrowththeory,ashighlightedby
Romer
(1990)
.Theimportanceoftechiesforproductivitygrowthhasalsobeenemphasizedintheeconomichistoryliterature
.1
Inthispaper,westudytheroleoftechiesinenhancing?rm-levelproductivitygrowth.Weshowthattechiesraise?rm-levelproductivityandthatthise?ectextendsbeyondtechieswhodoresearchanddevelopment(R&D).Techiesthatworkwithinformationandcommunicationtechnology(ICT)andothertechnicaltasksequallya?ect?rmlevelproductivitygrowth.Wealsoshowthattheire?ectisimportantnotonlyinmanufacturingbutalsointhenon-
manufacturingsector.
Westartbyprovidingacomprehensivedescriptionoftechiesbasedonpreciseadministra-tiveandsurveydatasetsfromtheFrenchnationalstatisticalinstitute,INSEE.WeidentifytechieworkersbyusingthecomprehensiveFrenchoccupationalclassi?cation(
INSEE,
2003
).TechiejobsaredistinguishedfromotheroccupationsbyINSEEbecausetheyarerelatedtotheinstallation,management,maintenance,andsupportofICT,productandprocessdesign,longer-termR&Dactivities,andothertechnology-relatedtasks.WeshowthattechiesarealsodistinguishedfromotherworkersbytheirSTEM(science,technology,engineering,andmath,includingcomputerscience)diplomas,skills,andexperience.Wealsoshowthatthey
adopt,manage,anddi?usetechnologywithin?rms.
Techiesarenothomogeneous,andweclassifythembasedontheirspecializationsinR&D,
1
Kellyetal.
(2014)and
BenZeevetal.
(2017)highlighttheimportanceoftheBritishapprenticesys
-temduringtheBritishIndustrialRevolutioninsupplyingthebasicskillsneededfortechnologyadoption.Similarly,
Kellyetal.
(2023)showthattheBritishIndustrialRevolutionstartedinareaswheretechnically
trainedmechanicswereabundant,and
Hanlon
(2022)showshowtheemergenceof“professional”engineers
underpinnedtheIndustrialRevolution.
MaloneyandValenciaCaicedo
(2017)constructadatasetofengineer
intensityfortheAmericasandU.S.countiesaround1880andshowthatthisintensityhelpspredictincometoday.
2
ICTorothertechnology-relatedoccupations.Thesedistinctionsareimportantbecausetheyallowustodistinguishtheimpactofthesethreedi?erenttypesoftechieson?rm-levelproductivity.Importantly,R&Dtechiesaremuchmorecommoninmanufacturingthantheyareinnon-manufacturing,whilethereverseistrueforICTtechies.Therefore,limitingthefocustoR&Dtechiesalonedoesnotprovideanaccuratepictureoftheoverallin?uence
oftechiesacrossindustries.
AlargeliteraturehasstudiedtheroleofR&Dexpenditureinshaping?rm,industryandnationaloutcomes.Our?rm-levelanalysisusesthewagebillofR&DworkersinsteadoftotalR&Dexpenditures,whichisnotalimitationfortworeasons.First,mostofR&DexpenditureinFranceisonwages,andbyalargemargin,comparedtootherR&D-relatedexpenditures.Consistentwiththis,R&DwagesarehighlycorrelatedwithtotalR&Dexpendituresatthe?rmlevel.Second,non-wageR&Dexpendituresareincludedinourmeasureofthe?rms’
purchasedinputsandcapital.
Therightwaytomeasure?rm-levelproductivitydi?erencesiscontentious,butthereisbroadconsensusthatthesedi?erencesareverylarge.Thereismuchlessconsensusabout,toechothetitleofthein?uentialsurveyby
Syverson
(2011),whatdeterminesproductivity
di?erences.Asnotedby
DeLoeckerandSyverson
(2021),onlyafewpapershavetriedto
answerthisquestioninastructuralway,whichrequiresamethodologythatpermitsbothconsistentestimationof?rm-levelproductivityanditscausaldeterminants.Ourpaperaddstothisliteratureintwodimensions:wearethe?rsttojointlystudytheimpactofR&D,ICT,andothertechieson?rm-levelproductivity,andalsothe?rsttostudy?rmsinnon-manufacturinginadditiontomanufacturing.Thisbroadenedfocusallowsustopaintamore
completepictureoftheoverallin?uenceoftechiesonproductivitygrowth.
Ouranalysisofthesurveyandadministrativedataarecomplementaryonetotheother.Thethreesurveysthatweanalyze(oneattheindividuallevelandtwoatthe?rm-level)allowustostudythequali?cationsandtasksoftechies,andhowtechiesarecorrelatedwith?rm-
levelinnovatione?ortandoutcomes.Thislendscredencetothestructuralanalysis,which
3
isbasedonadministrativedata.Weusetheadministrativedatatoconstructa?rm-levelunbalancedpanelofmanufacturingandnon-manufacturing?rmsfrom2011to2019.Thepanelincludesdataon?rms’inputs(capital,laborbydetailedoccupation,andexpenditureonmaterials)andrevenue,aswellasanindicatorforexporting.Weusethepaneltoestimatestructuralmodelsof?rm-levelHicks-neutraltotalfactorproductivity(TFP)andthecausale?ectoftechiesandexportingonproductivity.Weusetworecentstructuralproductionfunctionestimators,dueto
Griecoetal.
(2016)(hereafter,GLZ)andto
Gandhietal.
(2020)
(hereafter,GNR),whichhavedi?erentadvantagesanddisadvantagesforourapplication
thatwediscussbelow.
Oureconometricstrategyisbasedontwoassumptions.First,techiesa?ectHicks-neutralTFPwithalag.Second,techiesa?ectoutputonlythroughtheirimpactonfuturepro-ductivity,andnotthroughanycontemporaneouscontributiontofactorservicesthata?ectcurrentoutput.Thisisanalogoustothewayeconomistsusuallythinkaboutcurrentinvest-mentspending,whichdoesn’tincreasecurrentoutputbutincreasesfutureoutputthroughitsimpactonfuturecapitalstock.ThisisalsohoweconomistsusuallythinkaboutR&Dexpenditure,a?ectingonlyfutureoutcomes.Weusea?exiblespeci?cationofthe?rm’sproductivityprocess,whichpermitsustomakecausalstatementsaboutthee?ectsof?rms’
employmentofR&D,ICTandothertechies,aswellasexportstatus.
We?ndthat?rmsthatemploytechieshavesubstantiallyhigherfutureproductivitythanthosewhodonot.Thepresenceoftechiesleadsto4or5percenthigherproduc-tivityayearlater,withalongrune?ectofover45percentinbothmanufacturingandnon-manufacturing?rms.Ouranalysiscon?rmstheimportanceofR&DtechiesforTFPgrowthinmanufacturing,asin
DoraszelskiandJaumandreu
(2013)
.Inaddition,we?ndthatthepositiveimpactoftechiesonproductivityisnotlimitedtoR&D.ICTandothertechieworkersalsopositivelyimpactproductivityinmanufacturingandnon-manufacturingindustries.Interestingly,R&Dtechiesdonotsigni?cantlycontributetotheproductivity
growthofnon-manufacturing?rms.Inaddition,we?ndthatbothengineersandtechnicians
4
increase?rmproductivityinbothmanufacturingandnon-manufacturingindustries,with
engineershavingabiggerimpactthantechnicians.
TFPisde?nedasrealoutputperunitofrealinputs.However,ourdatareportsrevenueratherthanrealoutput,andexpendituresonmaterialsratherthanquantities—atypicalfeatureof?rm-leveldatasetsandofproductivitystudies.Weaddressthesechallengesby
applyingtheestimatorof
Griecoetal.
(2016),whichwasdevelopedforsuchdatasets
.
TheGLZestimatorrestsonthreemainassumptions.First,itassumesthatall?rmsinanindustryhavethesameconstantelasticityofsubstitution(CES)productionfunction.Second,itrestrictsreturnstoscaletobeconstant.Third,itassumesthatbothmaterialsandlaborinputsfullyand?exiblyadjustinresponsetocurrentproductivityshocks.Weexaminethesensitivityofourresultsbyextendingthemethodologyof
Gandhietal.
(2020)
tooursetting,whererealoutputisnotobserved.
UnlikeGLZ,GNRimposesnofunctionalformrestrictionsontheproductionfunctionanddoesnotrequireconstantreturnstoscale.Furthermore,GNR’s?exibilityinaccommodatinglaborasa“dynamic”(predeterminedinperiodt)inputisparticularlyattractivegiventhelabormarketinstitutionsinFrance.WeemploytwovariationsofGNR:oneinwhichbothlaborandmaterialsare“static”inputs,similartoGLZ,andanother,inwhichlaborisdynamicanddoesnotrespondtocurrentproductivityshocks.However,ourapplicationofGNRcomeswithtwodrawbacks:itassumesthatrealmaterialsinputquantitiesareknownwhiletheyarenot,andwecanonlyidentifytheimpactoftechiesonproductivityuptoanunknownparameter.Despitethedi?erencesbetweentheestimators,ourestimatesoftheimpactoftechiesonproductivityusingtheGNRmethodologyarequalitativelysimilarto
thoseweobtainusingGLZ.
Ourassumptionthattechiesdon’ta?ectthecurrentoutputbutdoa?ectfuturepro-ductivityiskeytoourresearchdesign.Weexaminethevalidityofthisassumptionbyconsideringthesimplenullhypothesisthattechiesarenodi?erentthanotherworkersand
rejectthisnullinfavorofthealternativethatourbaselineassumptionisabetter?ttothe
5
data.Wealsoshowthatourinferencesaboutthee?ectoftechiesarerobusttoanonlinearadjustmentprocessandtoare-classi?cationofOther(notR&DnorICT)techiesasregular
labor.
Relatedresearch.Asmallliteratureexaminestheimpactoftechies’impactonoutput,employmentstructure,andproductivityatthe?rmlevel.Themotivationforthisliteratureisstatedsuccinctlyby
TambeandHitt
(2014):“thetechnicalknow-howrequiredtoimplement
newITinnovationsisprimarilyembodiedwithintheITworkforce”.Similarly,
Demingand
Noray
(2018)showthat,intheirwords,“STEMjobsaretheleadingedgeoftechnology
di?usioninthelabormarket”.Whiletheliteratureon?rm-levelimpactsofinvestmentinITandinR&Disvast,itrarelystudiestheimportanceofthosekeyworkerswhoinstall,
manageanddi?useITandothertechnologieswithinthe?rm.
Alackof?rm-occupation-leveldatainmostadministrativeandsurveydatasetshashampered?rm-levelresearchonthisproposition.Anexceptionis
Harriganetal.
(2021),
whichusesdetailedoccupationaldata(includingdataontechies)fortheentireFrenchprivatesectorfrom1994to2007.
Harriganetal.
(2021)showthatemploymentgrowthishigherin
French?rmswithmoretechiesandalsothatmoretechiesleadtowithin-?rmskillupgrading.
Lichtenberg
(1995)and
BrynjolfssonandHitt
(1996)?ndthatITlaborhasapositiveoutput
elasticity,aresultcon?rmedonlaterdataby
TambeandHitt
(2012)
.UsingaremarkabledatasetthattracksthemovementofITworkersacross?rms,
TambeandHitt
(2014)?nd
whattheyinterpretasevidenceforknowledgespilloversacross?rmsthroughthechanneloftechiemobility.Noneofthesepapersstructurallyestimatetheimpactoftechiesonproductivity,nordotheystudythedi?erenttasksthattechiesperform(e.g.,ITversus
R&D).
Werelyonrecentadvancesinthemethodologyofestimating?rm-levelproductivityanditsdeterminants.Thisliteraturewasinitiatedby
OlleyandPakes
(1996)(OP)byestimat
-
ingproductionfunctionsandassociated?rm-speci?c,time-varyingHicks-neutraltotalfactor
6
productivitydi?erences.Otherkeymethodologicalpapersinthisliteratureinclude
Levin-
sohnandPetrin
(2003)(LP)and
Ackerbergetal.
(2015)(ACF),asetoftechniqueswhich
wewillrefertoasOP/LP/ACF.Thecommonthreadthatrunsthroughthesepapersisthattheyapplythe“controlfunction”approachforidentifyingtheproductionfunction.Count-lesspapershaveappliedtheOP/LP/ACFmethodologytoestimateTFP,butthestudyof
thedeterminantsof?rm-levelTFPisremarkablysparse.
Twopioneeringpapersthatstudythedeterminantsof?rm-levelTFPare
DeLoecker
(2013)(exporting)and
DoraszelskiandJaumandreu
(2013)(expenditureonR&D).Wedis
-cussthesepapersbelow,asourmethodologyreliesontheirinsights.Themethodologyof
DoraszelskiandJaumandreu
(2013)requiresobservingrealinputsandoutputs,aspeci?c
functionalformfortheproductionfunction,andassumptionsonlabor?exibility.Asdis-cussedabove,ourapplicationsofGLZandGNRaddresstheselimitationsinoursetting,in
di?erentways.
Twoseriousconcernshaverecentlybeenraisedforthecontrolfunctionapproach.First,
Gandhietal.
(2020)identifyaweakinstrumentsproblem.Second,
Ackerbergetal.
(2021)
showthatthecontrolfunctionapproachsu?ersfroma“weakmoments”problem,wheretheGMMobjectivefunctionadmitsmultiplesolutionswithequalvalueoftheproblem.TheseproblemsarenotpresentintheGLZandGNRestimators,whichfurthermotivatesusto
applythem,ratherthantheOP/LP/ACFapproach.
Therestofthepaperisorganizedasfollows.InSection
2
weprovideadetailedaccountofthesourcesandconstructionofourdatasets.InSection
3
wepresentacomprehensiveanalysisoftheroleoftechies,highlightingtheirtechnicalexpertiseandtheircrucialroleinadopting,mediating,anddi?usingtechnologyatthe?rmlevel.Section
4
outlinesthetheo-reticalbasisfortheinclusionoftechiesinourproductivitymodelandhowtheycanimpactproductivity.InSection
5
wedescribeourmethodology,comparingtherelativeadvantagesoftheGLZandGNRestimators.Therewealsoprovideacomprehensivediscussionofthe
econometricchallengesandthestepstakentoaddressthem.InSection
6
wepresentthe
7
mainresultsofouranalysisandperformvarioussensitivitycheckstotesttherobustnessofour?ndings.WeconcludeinSection
7
withasummaryofourkeyresultsandadiscussion
oftheirimplicationsforpolicymakers.
2Data
Weconstructapaneldataseton?rmsintheFrenchprivatesectorbetween2011and2019bymergingthreecon?dential,administrative?rm-leveldatasets
.2
Wecomplementthisinfor-mationwithsurveydatatocharacterizetechiesanddescribetheirrolesin?rms.Matching?rmsacrossthesedatasetsisstraightforwardbecause?rmsareidenti?edbythesameiden-ti?cationnumber(SIREN)ineachofthethreedatasets.Wehighlightkeyfeaturesofthe
datahereandrelegateotherdetailstoAppendix
A.
2.1Thecompositionoflaborwithin?rms
OurdataonemploymentisfromtheDADS.3
All?rmswithemployeesarerequiredtoreportwages,hourspaid,occupation,andthe2-digitsectorofactivityofthe?rm.Theestimation
sampleincludes?rmsin17industriesinbothmanufacturingandnon-manufacturingsectors
.4
TheDADSreportsdetailed4-digitoccupationalcodes,almost500intotal,classi?edusingtheFrenchPCSclassi?cation.Theseoccupationalcodesarede?nedandexplainedingreatdetailin
INSEE
(2003),andweusethesede?nitionstoselectthe584-digitoccupations
thatweclassifyastechies.AswewillshowinSection
3,workersintheseoccupationsdi?er
fromotherworkersintheireducationandtrainingaswellasinthetaskstheyperform.Theirworkiscloselyrelatedtotheinstallation,management,maintenance,andsupportof
ICT,productandprocessdesign,longer-termR&Dactivities,andothertasksrelatedto
22011isthe?rstyearforwhichourdataareavailableand2019isthelastpre-pandemicyear.3DéclarationAnnuelledeDonnéesSociales
4Onesector(cokeandre?nedpetroleum)isdroppedbecauseithastinysharesoftotalhoursworked,andonesector(Transportationandstorage)isdroppedbecausetheestimationoftheproductionfunctionusingGLZfailedtoconverge.Wealsodropthecomputersandelectronicssectorbecauseofitsveryhighintensityintechieworkers.
8
technology.Inshort,theemploymentoftechiesisadirectmeasureof?rms’investmentin
technology.
Foranalyticalpurposes,wegroupthetechieoccupationsintwoalternativeways.The?rstsimplyclassi?esthembytheir2-digitcategories,technicalmanagersandengineers(PCS38)andtechnicians(PCS47).Thesecondgroupingcomprisesthreecategoriesde?nedbyus:R&Dtechies,ICTtechies,andOthertechies,seeTable
A1.
Thesethreecategoriesare
basedonthede?nitionsanddescriptionsofthe4-digitcategoriesin
INSEE
(2003)
.
Thedocumentationin
INSEE
(2003)makesitclearthattechiesperformdi?erenttasks
thanworkersinotheroccupations.Forexample,technicalmanagersandengineers(PCS38)aredistinguishedfromothermanagers(PCS37)bythefactthatfortheformer,“thescienti?cortechnicalaspecttakesprecedenceovertheadministrativeorcommercialaspect”,whereasforthelatter“theadministrativeorcommercialaspectprevails”.Similardistinctionsaremadebetweentechniciansandotheroccupations
.5
Beyondwhatissuggestedbytheiroccupationaltitles(reportedinTable
A1),theINSEEdocumentationalsomakesclearthat
techiesperformtasksthatsupportproductionbutarenotproductionorfabricationtasksperse.Thisgroundsourassumptionthattheroleoftechiesistoincreaseproductivityrather
thantocontributetocurrentoutputlikeothertypesofworkers.
Ourclassi?cationoftechiesintoR&DandICTtechiesisunambiguousandisbasedonareadingoftheoccupationalde?nitionsreportedinTable
A1
(
INSEE,
2003
).Forexample,
alltheoccupationsclassi?edasR&Dtechieshavethephrase“researchanddevelopment”in
theirjobdescriptions,whilethoseclassi?edasICTtechiesallhavethephrases“Informationtechnology”,“computerscience”and/or“telecommunications”intheirjobdescriptions.Acloselookatthedetailed
INSEE
(2003)descriptionsoftheOthertechiescategoryyields
twoobservations.First,thisgroupexhibitsheterogeneityintheircompositioncomprisingengineers,technicalexecutives,andtechniciansinvolvedintheadoptionanddissemination
oftechnologiesnotrelatedtoR&DorICTandnewproductionmethodswithintheir?rms.
5pages191,221and343of
INSEE
(2003),
9
Acaseinpointaretheengineersandmanagersofproductionmethod(PCS387c),whoareresponsibleforadaptingandoptimizingmanufacturingmethodsintheprivatesector.Secondly,despitebeingnotablydi?erentfromproductionandfabricationactivities,theyoptimizetheproductivityofworkersinthose?elds.Inourbaselineresultsbelow,weincludeOthertechiesalongwithR&DandICTtechiesasdriversofproductivity,butwealsoreportresultsthattreatOthertechiesasordinaryworkerswhocontributetocurrentoutputratherthanimproveproductivitywithalag.Ourresultsarenotsensitivetothisreallocationof
Othertechies.
Hoursworkedinnon-techieoccupationsareassumedtocontributedirectlytocurrent
output,asisstandardinthestructuralproductivityestimationliterature.
2.2Balancesheetsandexporting
FirmbalancesheetinformationcomesfromtheFAREdatasetfor2011–2019
.6
Thesourceofinformationis?rms’taxdeclarations.Weusetheinformationontotalrevenues,materialexpenditures,andthenecessaryseriestoconstructeach?rm’scapitalstock.Appendix
A
describesthesourcedataandexplainshowweconstruct?rm-levelcapitalstocks.
FrenchCustomsprovidedataontheexportsof?rmslocatedinFrance.Weusethis
informationtogenerateanindicatorofexportstatusforeach?rm-year.
2.3Surveydata
Anovelcontributionofourpaperisourfocusontechiesandtheirimpacton?rmlevelproductivity.Wefocusontechiesbecauseoftheircentralroleinplanning,installing,andmaintaininginformationandcomputertechnology(ICT),inResearchandDevelopment(R&D)andothertechnologies,andintrainingandassistingotherworkersintheuseoftechnology.Wecomplementthestructuralestimationoftechies’impactonproductivityby
collectinginformationfromthreesurveydatasources,whichprovideadditionalinformation
6FichierApprochédesRésultatsésane
10
ontechiesthatallowsustocharacterizebettertheirroleinthe?rm.
First,weprovideinformationoneducationinSTEM?elds(Science,Technology,Engi-neering,andMath,includingComputerScience)andSTEMtrainingoftechieworkersfromtheTrainingandProfessionalQuali?cation(TPQ)surveyin2015.Thesurveycollectsdataonthespecializationofthehighestdegreeobtainedbytheindividualandwhetherandwhich
trainingafterthehighestdegrees/hereceived.
Second,wecollectdataon?rms’expendituresonR&D(bothinternalandexternal)fromtheAnnualSurveyontheMeansdedicatedtoResearchandDeve
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 湖北黃岡應(yīng)急管理職業(yè)技術(shù)學(xué)院《國際商務(wù)策劃》2023-2024學(xué)年第二學(xué)期期末試卷
- Unit 5 Topic 2 Section C 教學(xué)設(shè)計 2024-2025學(xué)年仁愛科普版八年級英語下冊
- 比例的認識(教學(xué)設(shè)計)-2023-2024學(xué)年六年級下冊數(shù)學(xué)北師大版
- 慶陽職業(yè)技術(shù)學(xué)院《工業(yè)通風(fēng)與除塵》2023-2024學(xué)年第二學(xué)期期末試卷
- 宣化科技職業(yè)學(xué)院《建筑風(fēng)景速寫》2023-2024學(xué)年第二學(xué)期期末試卷
- 遼寧現(xiàn)代服務(wù)職業(yè)技術(shù)學(xué)院《食品生物化學(xué)(實驗)》2023-2024學(xué)年第二學(xué)期期末試卷
- 濟南2024年山東濟南市章丘區(qū)社區(qū)工作者招考10人筆試歷年參考題庫附帶答案詳解
- 信陽師范大學(xué)《語文課堂教學(xué)技能》2023-2024學(xué)年第二學(xué)期期末試卷
- 濟南護理職業(yè)學(xué)院《中西醫(yī)結(jié)合實驗診斷研究》2023-2024學(xué)年第二學(xué)期期末試卷
- 河南質(zhì)量工程職業(yè)學(xué)院《結(jié)構(gòu)化學(xué)C》2023-2024學(xué)年第二學(xué)期期末試卷
- 數(shù)字化戰(zhàn)略轉(zhuǎn)型-深度研究
- 【上海】第一次月考卷01【20~21章】
- 2025年東營科技職業(yè)學(xué)院高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 2025年企業(yè)中高層安全第一課:安全責(zé)任意識強化專題培訓(xùn)
- 英語-九師聯(lián)盟2025屆高三年級上學(xué)期1月質(zhì)量檢測試題和答案
- 流行性感冒診療方案(2025年版)
- 2024CSCO免疫檢查點抑制劑相關(guān)的毒性管理指南
- 《影像增強檢查外周靜脈通路三級評價模式應(yīng)用規(guī)范》編制說明
- 2025年社區(qū)計生工作計劃(三篇)
- 2025江西上饒經(jīng)濟技術(shù)開發(fā)區(qū)招商集團限公司招聘29人高頻重點提升(共500題)附帶答案詳解
- 石油行業(yè)海洋石油勘探與開發(fā)方案
評論
0/150
提交評論