技術(shù)與企業(yè)水平生產(chǎn)力 Techies and Firm Level Productivity_第1頁
技術(shù)與企業(yè)水平生產(chǎn)力 Techies and Firm Level Productivity_第2頁
技術(shù)與企業(yè)水平生產(chǎn)力 Techies and Firm Level Productivity_第3頁
技術(shù)與企業(yè)水平生產(chǎn)力 Techies and Firm Level Productivity_第4頁
技術(shù)與企業(yè)水平生產(chǎn)力 Techies and Firm Level Productivity_第5頁
已閱讀5頁,還剩123頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

NBERWORKINGPAPERSERIES

TECHIESANDFIRMLEVELPRODUCTIVITY

JamesHarrigan

AriellReshef

FaridToubal

WorkingPaper31341

/papers/w31341

NATIONALBUREAUOFECONOMICRESEARCH

1050MassachusettsAvenue

Cambridge,MA02138

June2023

WethankDaronAcemoglu,MaryAmiti,ZsofiaBarany,EricBartelsman,FloraBellone,AndrewBernard,TiborBesedes,EstherAnnB?ler,DavinChor,ChiaraCriscuolo,JanDeLoecker,AlonEizenberg,GeorgGraetz,GiammarioImpullitti,BeataJavorcik,GuyMichaels,Jean-MarcRobin,andJohnVanReenenforhelpfulcomments.ThepaperbenefitedfromcommentsfromseminarparticipantsatAarhusUniversity,AmericanUniversity,AMSE,BarIlanUniversity,BenGurionUniversity,CREST,DresdenUniversity,GroningenUniversity,FranceStratégie,HebrewUniversity,UniversityofLeMans,LSE,NottinghamUniversity,NewYorkUniversity,SAIS,andtheParisTradeSeminar,aswellasworkshopparticipantsattheCEPR,DEGIT,ENEF,ERWIT,IFN(Stockholm),SETC,andTRISTAN(Dresden).ThisresearchwassupportedbytheBankardFundforPoliticalEconomyattheUniversityofVirginiaandbytheAgenceNationaldelaRechercheundergrantnumbersANR-16-CE60-0001-01andANR-10-EQPX-17(Investissementsd’Avenir).TheviewsexpressedhereinarethoseoftheauthorsanddonotnecessarilyreflecttheviewsoftheNationalBureauofEconomicResearch.

NBERworkingpapersarecirculatedfordiscussionandcommentpurposes.Theyhavenotbeenpeer-reviewedorbeensubjecttothereviewbytheNBERBoardofDirectorsthataccompaniesofficialNBERpublications.

?2023byJamesHarrigan,AriellReshef,andFaridToubal.Allrightsreserved.Shortsectionsoftext,nottoexceedtwoparagraphs,maybequotedwithoutexplicitpermissionprovidedthatfullcredit,including?notice,isgiventothesource.

TechiesandFirmLevelProductivity

JamesHarrigan,AriellReshef,andFaridToubal

NBERWorkingPaperNo.31341

June2023

JELNo.D2,D24,O3,O33

ABSTRACT

Westudytheimpactoftechies—engineersandothertechnicallytrainedworkers—onfirm-levelproductivity.WefirstreportnewfactsontheroleoftechiesinthefirmbyusingFrenchadministrativedataanduniquesurveys.TechiesareSTEM-skillintensiveandareassociatedwithinnovation,aswellaswithtechnologyadoption,management,anddiffusionwithinfirms.Usingstructuraleconometricmethods,weestimatethecausaleffectoftechiesonfirm-levelHicks-neutralproductivityinbothmanufacturingandnon-manufacturingindustries.Wefindthattechiesraisefirm-levelproductivity,andthiseffectgoesbeyondtheemploymentofR&Dworkers,extendingtoICTandothertechies.Innon-manufacturingfirms,theimpactoftechiesonproductivityoperatesmostlythroughICTandothertechies,notR&Dworkers.Engineershaveagreatereffectonproductivitythantechnicians.

JamesHarrigan

DepartmentofEconomics

UniversityofVirginia

P.O.Box400182

Charlottesville,VA22904-4182

andNBER

james.harrigan@

AriellReshef

UniversitéParis1-PanthéonSorbonneMaisondesSciencesEconomiques

106-112Boulevarddel'Hopital

75647ParisCedex13

France

andCNRS,ParisSchoolofEconomics,CEPIIariell.reshef@psemail.eu

FaridToubal

UniversityofParis-Dauphine-PSL

PlaceduMaréchaldeLattredeTassigny75775ParisCedex16

France

andCREST,CEPII

farid.toubal@dauphine.psl.eu

1

1Introduction

Engineersandothertechnicallytrainedworkers(techies)havelongbeenrecognizedasfun-damentalindrivingproductivitygrowth.Forexample,engineersareattheheartofmodernendogenousgrowththeory,ashighlightedby

Romer

(1990)

.Theimportanceoftechiesforproductivitygrowthhasalsobeenemphasizedintheeconomichistoryliterature

.1

Inthispaper,westudytheroleoftechiesinenhancing?rm-levelproductivitygrowth.Weshowthattechiesraise?rm-levelproductivityandthatthise?ectextendsbeyondtechieswhodoresearchanddevelopment(R&D).Techiesthatworkwithinformationandcommunicationtechnology(ICT)andothertechnicaltasksequallya?ect?rmlevelproductivitygrowth.Wealsoshowthattheire?ectisimportantnotonlyinmanufacturingbutalsointhenon-

manufacturingsector.

Westartbyprovidingacomprehensivedescriptionoftechiesbasedonpreciseadministra-tiveandsurveydatasetsfromtheFrenchnationalstatisticalinstitute,INSEE.WeidentifytechieworkersbyusingthecomprehensiveFrenchoccupationalclassi?cation(

INSEE,

2003

).TechiejobsaredistinguishedfromotheroccupationsbyINSEEbecausetheyarerelatedtotheinstallation,management,maintenance,andsupportofICT,productandprocessdesign,longer-termR&Dactivities,andothertechnology-relatedtasks.WeshowthattechiesarealsodistinguishedfromotherworkersbytheirSTEM(science,technology,engineering,andmath,includingcomputerscience)diplomas,skills,andexperience.Wealsoshowthatthey

adopt,manage,anddi?usetechnologywithin?rms.

Techiesarenothomogeneous,andweclassifythembasedontheirspecializationsinR&D,

1

Kellyetal.

(2014)and

BenZeevetal.

(2017)highlighttheimportanceoftheBritishapprenticesys

-temduringtheBritishIndustrialRevolutioninsupplyingthebasicskillsneededfortechnologyadoption.Similarly,

Kellyetal.

(2023)showthattheBritishIndustrialRevolutionstartedinareaswheretechnically

trainedmechanicswereabundant,and

Hanlon

(2022)showshowtheemergenceof“professional”engineers

underpinnedtheIndustrialRevolution.

MaloneyandValenciaCaicedo

(2017)constructadatasetofengineer

intensityfortheAmericasandU.S.countiesaround1880andshowthatthisintensityhelpspredictincometoday.

2

ICTorothertechnology-relatedoccupations.Thesedistinctionsareimportantbecausetheyallowustodistinguishtheimpactofthesethreedi?erenttypesoftechieson?rm-levelproductivity.Importantly,R&Dtechiesaremuchmorecommoninmanufacturingthantheyareinnon-manufacturing,whilethereverseistrueforICTtechies.Therefore,limitingthefocustoR&Dtechiesalonedoesnotprovideanaccuratepictureoftheoverallin?uence

oftechiesacrossindustries.

AlargeliteraturehasstudiedtheroleofR&Dexpenditureinshaping?rm,industryandnationaloutcomes.Our?rm-levelanalysisusesthewagebillofR&DworkersinsteadoftotalR&Dexpenditures,whichisnotalimitationfortworeasons.First,mostofR&DexpenditureinFranceisonwages,andbyalargemargin,comparedtootherR&D-relatedexpenditures.Consistentwiththis,R&DwagesarehighlycorrelatedwithtotalR&Dexpendituresatthe?rmlevel.Second,non-wageR&Dexpendituresareincludedinourmeasureofthe?rms’

purchasedinputsandcapital.

Therightwaytomeasure?rm-levelproductivitydi?erencesiscontentious,butthereisbroadconsensusthatthesedi?erencesareverylarge.Thereismuchlessconsensusabout,toechothetitleofthein?uentialsurveyby

Syverson

(2011),whatdeterminesproductivity

di?erences.Asnotedby

DeLoeckerandSyverson

(2021),onlyafewpapershavetriedto

answerthisquestioninastructuralway,whichrequiresamethodologythatpermitsbothconsistentestimationof?rm-levelproductivityanditscausaldeterminants.Ourpaperaddstothisliteratureintwodimensions:wearethe?rsttojointlystudytheimpactofR&D,ICT,andothertechieson?rm-levelproductivity,andalsothe?rsttostudy?rmsinnon-manufacturinginadditiontomanufacturing.Thisbroadenedfocusallowsustopaintamore

completepictureoftheoverallin?uenceoftechiesonproductivitygrowth.

Ouranalysisofthesurveyandadministrativedataarecomplementaryonetotheother.Thethreesurveysthatweanalyze(oneattheindividuallevelandtwoatthe?rm-level)allowustostudythequali?cationsandtasksoftechies,andhowtechiesarecorrelatedwith?rm-

levelinnovatione?ortandoutcomes.Thislendscredencetothestructuralanalysis,which

3

isbasedonadministrativedata.Weusetheadministrativedatatoconstructa?rm-levelunbalancedpanelofmanufacturingandnon-manufacturing?rmsfrom2011to2019.Thepanelincludesdataon?rms’inputs(capital,laborbydetailedoccupation,andexpenditureonmaterials)andrevenue,aswellasanindicatorforexporting.Weusethepaneltoestimatestructuralmodelsof?rm-levelHicks-neutraltotalfactorproductivity(TFP)andthecausale?ectoftechiesandexportingonproductivity.Weusetworecentstructuralproductionfunctionestimators,dueto

Griecoetal.

(2016)(hereafter,GLZ)andto

Gandhietal.

(2020)

(hereafter,GNR),whichhavedi?erentadvantagesanddisadvantagesforourapplication

thatwediscussbelow.

Oureconometricstrategyisbasedontwoassumptions.First,techiesa?ectHicks-neutralTFPwithalag.Second,techiesa?ectoutputonlythroughtheirimpactonfuturepro-ductivity,andnotthroughanycontemporaneouscontributiontofactorservicesthata?ectcurrentoutput.Thisisanalogoustothewayeconomistsusuallythinkaboutcurrentinvest-mentspending,whichdoesn’tincreasecurrentoutputbutincreasesfutureoutputthroughitsimpactonfuturecapitalstock.ThisisalsohoweconomistsusuallythinkaboutR&Dexpenditure,a?ectingonlyfutureoutcomes.Weusea?exiblespeci?cationofthe?rm’sproductivityprocess,whichpermitsustomakecausalstatementsaboutthee?ectsof?rms’

employmentofR&D,ICTandothertechies,aswellasexportstatus.

We?ndthat?rmsthatemploytechieshavesubstantiallyhigherfutureproductivitythanthosewhodonot.Thepresenceoftechiesleadsto4or5percenthigherproduc-tivityayearlater,withalongrune?ectofover45percentinbothmanufacturingandnon-manufacturing?rms.Ouranalysiscon?rmstheimportanceofR&DtechiesforTFPgrowthinmanufacturing,asin

DoraszelskiandJaumandreu

(2013)

.Inaddition,we?ndthatthepositiveimpactoftechiesonproductivityisnotlimitedtoR&D.ICTandothertechieworkersalsopositivelyimpactproductivityinmanufacturingandnon-manufacturingindustries.Interestingly,R&Dtechiesdonotsigni?cantlycontributetotheproductivity

growthofnon-manufacturing?rms.Inaddition,we?ndthatbothengineersandtechnicians

4

increase?rmproductivityinbothmanufacturingandnon-manufacturingindustries,with

engineershavingabiggerimpactthantechnicians.

TFPisde?nedasrealoutputperunitofrealinputs.However,ourdatareportsrevenueratherthanrealoutput,andexpendituresonmaterialsratherthanquantities—atypicalfeatureof?rm-leveldatasetsandofproductivitystudies.Weaddressthesechallengesby

applyingtheestimatorof

Griecoetal.

(2016),whichwasdevelopedforsuchdatasets

.

TheGLZestimatorrestsonthreemainassumptions.First,itassumesthatall?rmsinanindustryhavethesameconstantelasticityofsubstitution(CES)productionfunction.Second,itrestrictsreturnstoscaletobeconstant.Third,itassumesthatbothmaterialsandlaborinputsfullyand?exiblyadjustinresponsetocurrentproductivityshocks.Weexaminethesensitivityofourresultsbyextendingthemethodologyof

Gandhietal.

(2020)

tooursetting,whererealoutputisnotobserved.

UnlikeGLZ,GNRimposesnofunctionalformrestrictionsontheproductionfunctionanddoesnotrequireconstantreturnstoscale.Furthermore,GNR’s?exibilityinaccommodatinglaborasa“dynamic”(predeterminedinperiodt)inputisparticularlyattractivegiventhelabormarketinstitutionsinFrance.WeemploytwovariationsofGNR:oneinwhichbothlaborandmaterialsare“static”inputs,similartoGLZ,andanother,inwhichlaborisdynamicanddoesnotrespondtocurrentproductivityshocks.However,ourapplicationofGNRcomeswithtwodrawbacks:itassumesthatrealmaterialsinputquantitiesareknownwhiletheyarenot,andwecanonlyidentifytheimpactoftechiesonproductivityuptoanunknownparameter.Despitethedi?erencesbetweentheestimators,ourestimatesoftheimpactoftechiesonproductivityusingtheGNRmethodologyarequalitativelysimilarto

thoseweobtainusingGLZ.

Ourassumptionthattechiesdon’ta?ectthecurrentoutputbutdoa?ectfuturepro-ductivityiskeytoourresearchdesign.Weexaminethevalidityofthisassumptionbyconsideringthesimplenullhypothesisthattechiesarenodi?erentthanotherworkersand

rejectthisnullinfavorofthealternativethatourbaselineassumptionisabetter?ttothe

5

data.Wealsoshowthatourinferencesaboutthee?ectoftechiesarerobusttoanonlinearadjustmentprocessandtoare-classi?cationofOther(notR&DnorICT)techiesasregular

labor.

Relatedresearch.Asmallliteratureexaminestheimpactoftechies’impactonoutput,employmentstructure,andproductivityatthe?rmlevel.Themotivationforthisliteratureisstatedsuccinctlyby

TambeandHitt

(2014):“thetechnicalknow-howrequiredtoimplement

newITinnovationsisprimarilyembodiedwithintheITworkforce”.Similarly,

Demingand

Noray

(2018)showthat,intheirwords,“STEMjobsaretheleadingedgeoftechnology

di?usioninthelabormarket”.Whiletheliteratureon?rm-levelimpactsofinvestmentinITandinR&Disvast,itrarelystudiestheimportanceofthosekeyworkerswhoinstall,

manageanddi?useITandothertechnologieswithinthe?rm.

Alackof?rm-occupation-leveldatainmostadministrativeandsurveydatasetshashampered?rm-levelresearchonthisproposition.Anexceptionis

Harriganetal.

(2021),

whichusesdetailedoccupationaldata(includingdataontechies)fortheentireFrenchprivatesectorfrom1994to2007.

Harriganetal.

(2021)showthatemploymentgrowthishigherin

French?rmswithmoretechiesandalsothatmoretechiesleadtowithin-?rmskillupgrading.

Lichtenberg

(1995)and

BrynjolfssonandHitt

(1996)?ndthatITlaborhasapositiveoutput

elasticity,aresultcon?rmedonlaterdataby

TambeandHitt

(2012)

.UsingaremarkabledatasetthattracksthemovementofITworkersacross?rms,

TambeandHitt

(2014)?nd

whattheyinterpretasevidenceforknowledgespilloversacross?rmsthroughthechanneloftechiemobility.Noneofthesepapersstructurallyestimatetheimpactoftechiesonproductivity,nordotheystudythedi?erenttasksthattechiesperform(e.g.,ITversus

R&D).

Werelyonrecentadvancesinthemethodologyofestimating?rm-levelproductivityanditsdeterminants.Thisliteraturewasinitiatedby

OlleyandPakes

(1996)(OP)byestimat

-

ingproductionfunctionsandassociated?rm-speci?c,time-varyingHicks-neutraltotalfactor

6

productivitydi?erences.Otherkeymethodologicalpapersinthisliteratureinclude

Levin-

sohnandPetrin

(2003)(LP)and

Ackerbergetal.

(2015)(ACF),asetoftechniqueswhich

wewillrefertoasOP/LP/ACF.Thecommonthreadthatrunsthroughthesepapersisthattheyapplythe“controlfunction”approachforidentifyingtheproductionfunction.Count-lesspapershaveappliedtheOP/LP/ACFmethodologytoestimateTFP,butthestudyof

thedeterminantsof?rm-levelTFPisremarkablysparse.

Twopioneeringpapersthatstudythedeterminantsof?rm-levelTFPare

DeLoecker

(2013)(exporting)and

DoraszelskiandJaumandreu

(2013)(expenditureonR&D).Wedis

-cussthesepapersbelow,asourmethodologyreliesontheirinsights.Themethodologyof

DoraszelskiandJaumandreu

(2013)requiresobservingrealinputsandoutputs,aspeci?c

functionalformfortheproductionfunction,andassumptionsonlabor?exibility.Asdis-cussedabove,ourapplicationsofGLZandGNRaddresstheselimitationsinoursetting,in

di?erentways.

Twoseriousconcernshaverecentlybeenraisedforthecontrolfunctionapproach.First,

Gandhietal.

(2020)identifyaweakinstrumentsproblem.Second,

Ackerbergetal.

(2021)

showthatthecontrolfunctionapproachsu?ersfroma“weakmoments”problem,wheretheGMMobjectivefunctionadmitsmultiplesolutionswithequalvalueoftheproblem.TheseproblemsarenotpresentintheGLZandGNRestimators,whichfurthermotivatesusto

applythem,ratherthantheOP/LP/ACFapproach.

Therestofthepaperisorganizedasfollows.InSection

2

weprovideadetailedaccountofthesourcesandconstructionofourdatasets.InSection

3

wepresentacomprehensiveanalysisoftheroleoftechies,highlightingtheirtechnicalexpertiseandtheircrucialroleinadopting,mediating,anddi?usingtechnologyatthe?rmlevel.Section

4

outlinesthetheo-reticalbasisfortheinclusionoftechiesinourproductivitymodelandhowtheycanimpactproductivity.InSection

5

wedescribeourmethodology,comparingtherelativeadvantagesoftheGLZandGNRestimators.Therewealsoprovideacomprehensivediscussionofthe

econometricchallengesandthestepstakentoaddressthem.InSection

6

wepresentthe

7

mainresultsofouranalysisandperformvarioussensitivitycheckstotesttherobustnessofour?ndings.WeconcludeinSection

7

withasummaryofourkeyresultsandadiscussion

oftheirimplicationsforpolicymakers.

2Data

Weconstructapaneldataseton?rmsintheFrenchprivatesectorbetween2011and2019bymergingthreecon?dential,administrative?rm-leveldatasets

.2

Wecomplementthisinfor-mationwithsurveydatatocharacterizetechiesanddescribetheirrolesin?rms.Matching?rmsacrossthesedatasetsisstraightforwardbecause?rmsareidenti?edbythesameiden-ti?cationnumber(SIREN)ineachofthethreedatasets.Wehighlightkeyfeaturesofthe

datahereandrelegateotherdetailstoAppendix

A.

2.1Thecompositionoflaborwithin?rms

OurdataonemploymentisfromtheDADS.3

All?rmswithemployeesarerequiredtoreportwages,hourspaid,occupation,andthe2-digitsectorofactivityofthe?rm.Theestimation

sampleincludes?rmsin17industriesinbothmanufacturingandnon-manufacturingsectors

.4

TheDADSreportsdetailed4-digitoccupationalcodes,almost500intotal,classi?edusingtheFrenchPCSclassi?cation.Theseoccupationalcodesarede?nedandexplainedingreatdetailin

INSEE

(2003),andweusethesede?nitionstoselectthe584-digitoccupations

thatweclassifyastechies.AswewillshowinSection

3,workersintheseoccupationsdi?er

fromotherworkersintheireducationandtrainingaswellasinthetaskstheyperform.Theirworkiscloselyrelatedtotheinstallation,management,maintenance,andsupportof

ICT,productandprocessdesign,longer-termR&Dactivities,andothertasksrelatedto

22011isthe?rstyearforwhichourdataareavailableand2019isthelastpre-pandemicyear.3DéclarationAnnuelledeDonnéesSociales

4Onesector(cokeandre?nedpetroleum)isdroppedbecauseithastinysharesoftotalhoursworked,andonesector(Transportationandstorage)isdroppedbecausetheestimationoftheproductionfunctionusingGLZfailedtoconverge.Wealsodropthecomputersandelectronicssectorbecauseofitsveryhighintensityintechieworkers.

8

technology.Inshort,theemploymentoftechiesisadirectmeasureof?rms’investmentin

technology.

Foranalyticalpurposes,wegroupthetechieoccupationsintwoalternativeways.The?rstsimplyclassi?esthembytheir2-digitcategories,technicalmanagersandengineers(PCS38)andtechnicians(PCS47).Thesecondgroupingcomprisesthreecategoriesde?nedbyus:R&Dtechies,ICTtechies,andOthertechies,seeTable

A1.

Thesethreecategoriesare

basedonthede?nitionsanddescriptionsofthe4-digitcategoriesin

INSEE

(2003)

.

Thedocumentationin

INSEE

(2003)makesitclearthattechiesperformdi?erenttasks

thanworkersinotheroccupations.Forexample,technicalmanagersandengineers(PCS38)aredistinguishedfromothermanagers(PCS37)bythefactthatfortheformer,“thescienti?cortechnicalaspecttakesprecedenceovertheadministrativeorcommercialaspect”,whereasforthelatter“theadministrativeorcommercialaspectprevails”.Similardistinctionsaremadebetweentechniciansandotheroccupations

.5

Beyondwhatissuggestedbytheiroccupationaltitles(reportedinTable

A1),theINSEEdocumentationalsomakesclearthat

techiesperformtasksthatsupportproductionbutarenotproductionorfabricationtasksperse.Thisgroundsourassumptionthattheroleoftechiesistoincreaseproductivityrather

thantocontributetocurrentoutputlikeothertypesofworkers.

Ourclassi?cationoftechiesintoR&DandICTtechiesisunambiguousandisbasedonareadingoftheoccupationalde?nitionsreportedinTable

A1

(

INSEE,

2003

).Forexample,

alltheoccupationsclassi?edasR&Dtechieshavethephrase“researchanddevelopment”in

theirjobdescriptions,whilethoseclassi?edasICTtechiesallhavethephrases“Informationtechnology”,“computerscience”and/or“telecommunications”intheirjobdescriptions.Acloselookatthedetailed

INSEE

(2003)descriptionsoftheOthertechiescategoryyields

twoobservations.First,thisgroupexhibitsheterogeneityintheircompositioncomprisingengineers,technicalexecutives,andtechniciansinvolvedintheadoptionanddissemination

oftechnologiesnotrelatedtoR&DorICTandnewproductionmethodswithintheir?rms.

5pages191,221and343of

INSEE

(2003),

9

Acaseinpointaretheengineersandmanagersofproductionmethod(PCS387c),whoareresponsibleforadaptingandoptimizingmanufacturingmethodsintheprivatesector.Secondly,despitebeingnotablydi?erentfromproductionandfabricationactivities,theyoptimizetheproductivityofworkersinthose?elds.Inourbaselineresultsbelow,weincludeOthertechiesalongwithR&DandICTtechiesasdriversofproductivity,butwealsoreportresultsthattreatOthertechiesasordinaryworkerswhocontributetocurrentoutputratherthanimproveproductivitywithalag.Ourresultsarenotsensitivetothisreallocationof

Othertechies.

Hoursworkedinnon-techieoccupationsareassumedtocontributedirectlytocurrent

output,asisstandardinthestructuralproductivityestimationliterature.

2.2Balancesheetsandexporting

FirmbalancesheetinformationcomesfromtheFAREdatasetfor2011–2019

.6

Thesourceofinformationis?rms’taxdeclarations.Weusetheinformationontotalrevenues,materialexpenditures,andthenecessaryseriestoconstructeach?rm’scapitalstock.Appendix

A

describesthesourcedataandexplainshowweconstruct?rm-levelcapitalstocks.

FrenchCustomsprovidedataontheexportsof?rmslocatedinFrance.Weusethis

informationtogenerateanindicatorofexportstatusforeach?rm-year.

2.3Surveydata

Anovelcontributionofourpaperisourfocusontechiesandtheirimpacton?rmlevelproductivity.Wefocusontechiesbecauseoftheircentralroleinplanning,installing,andmaintaininginformationandcomputertechnology(ICT),inResearchandDevelopment(R&D)andothertechnologies,andintrainingandassistingotherworkersintheuseoftechnology.Wecomplementthestructuralestimationoftechies’impactonproductivityby

collectinginformationfromthreesurveydatasources,whichprovideadditionalinformation

6FichierApprochédesRésultatsésane

10

ontechiesthatallowsustocharacterizebettertheirroleinthe?rm.

First,weprovideinformationoneducationinSTEM?elds(Science,Technology,Engi-neering,andMath,includingComputerScience)andSTEMtrainingoftechieworkersfromtheTrainingandProfessionalQuali?cation(TPQ)surveyin2015.Thesurveycollectsdataonthespecializationofthehighestdegreeobtainedbytheindividualandwhetherandwhich

trainingafterthehighestdegrees/hereceived.

Second,wecollectdataon?rms’expendituresonR&D(bothinternalandexternal)fromtheAnnualSurveyontheMeansdedicatedtoResearchandDeve

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論