2023高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納_第1頁
2023高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納_第2頁
2023高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納_第3頁
2023高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納_第4頁
2023高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納全文共8頁,當(dāng)前為第1頁。2023高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納2023高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納全文共8頁,當(dāng)前為第1頁。高中數(shù)學(xué)學(xué)問點(diǎn)總結(jié)歸納

一、導(dǎo)數(shù)的應(yīng)用

1、用導(dǎo)數(shù)討論函數(shù)的最值

確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),討論在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊削減,右邊增加,則該零點(diǎn)處函數(shù)取微小值。

學(xué)習(xí)了如何用導(dǎo)數(shù)討論函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來檢驗(yàn)下學(xué)習(xí)成果。

2、生活中常見的函數(shù)優(yōu)化問題

1)費(fèi)用、成本最省問題

2)利潤(rùn)、收益最大問題

3)面積、體積最(大)問題

二、推理與證明

1、歸納推理:歸納推理是(高二數(shù)學(xué))的一個(gè)重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,的(方法)是充分考慮部分結(jié)論供應(yīng)的信息,從中發(fā)覺一般規(guī)律;類比推理的難點(diǎn)是發(fā)覺兩類對(duì)象的相像特征,由其中一類對(duì)象的特征得出另一類對(duì)象的特征,的方法是利用已經(jīng)把握的數(shù)學(xué)學(xué)問,分析兩類對(duì)象之間的關(guān)系,通過兩類對(duì)象已知的相像特征得出所需要的相像特征。

2023高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納全文共8頁,當(dāng)前為第2頁。2、類比推理:由兩類對(duì)象具有某些類似特征和其中一類對(duì)象的某些已知特征,推出另一類對(duì)象也具有這些特征的推理稱為類比推理,簡(jiǎn)而言之,類比推理是由特別到特別的推理。

三、不等式

對(duì)于含有參數(shù)的一元二次不等式解的爭(zhēng)論

1)二次項(xiàng)系數(shù):假如二次項(xiàng)系數(shù)含有字母,要分二次項(xiàng)系數(shù)是正數(shù)、零和負(fù)數(shù)三種狀況進(jìn)行爭(zhēng)論。

2)不等式對(duì)應(yīng)方程的根:假如一元二次不等式對(duì)應(yīng)的方程的根能夠通過因式分解的方法求出來,則依據(jù)這兩個(gè)根的大小進(jìn)行分類爭(zhēng)論,這時(shí),兩個(gè)根的大小關(guān)系就是分類標(biāo)準(zhǔn),假如一元二次不等式對(duì)應(yīng)的方程根不能通過因式分解的方法求出來,則依據(jù)方程的判別式進(jìn)行分類爭(zhēng)論。

通過不等式練習(xí)題能夠關(guān)心你更加?jì)故斓倪\(yùn)用不等式的學(xué)問點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中總結(jié)出來。

四、坐標(biāo)平面上的直線

1、內(nèi)容要目:直線的點(diǎn)方向式方程、直線的點(diǎn)法向式方程、點(diǎn)斜式方程、直線方程的一般式、直線的傾斜角和斜率等。點(diǎn)到直線的距離,兩直線的夾角以及兩平行線之間的距離。

2、基本要求:把握求直線的方法,嫻熟轉(zhuǎn)化確定直線方向的不同條件(例如:直線方向向量、法向量、斜率、傾斜角等)。嫻熟推斷點(diǎn)與直線、直線與直線的不同位置,能正確求點(diǎn)到直線的距離、兩直2023高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納全文共8頁,當(dāng)前為第3頁。線的交點(diǎn)坐標(biāo)及兩直線的夾角大小。

3、重難點(diǎn):初步建立代數(shù)方法解決幾何問題的觀念,正確將幾何條件與代數(shù)表示進(jìn)行轉(zhuǎn)化,定量地討論點(diǎn)與直線、直線與直線的位置關(guān)系。依據(jù)兩個(gè)獨(dú)立條件求出直線方程。嫻熟運(yùn)用待定系數(shù)法。

五、圓錐曲線

1、內(nèi)容要目:直角坐標(biāo)系中,曲線C是方程F(x,y)=0的曲線及方程F(x,y)=0是曲線C的方程,圓的標(biāo)準(zhǔn)方程及圓的一般方程。橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程及它們的性質(zhì)。

2、基本要求:理解曲線的方程與方程的曲線的意義,利用代數(shù)方法推斷定點(diǎn)是否在曲線

上及求曲線的交點(diǎn)。把握?qǐng)A、橢圓、雙曲線、拋物線的定義和求這些曲線方程的基本方法。求曲線的交點(diǎn)之間的距離及交點(diǎn)的中點(diǎn)坐標(biāo)。利用直線和圓、圓和圓的位置關(guān)系的幾何判定,確定它們的位置關(guān)系并利用解析法解決相應(yīng)的幾何問題。

3、重難點(diǎn):建立數(shù)形結(jié)合的概念,理解曲線與方程的對(duì)應(yīng)關(guān)系,把握代數(shù)討論幾何的方法,把握把已知條件轉(zhuǎn)化為等價(jià)的代數(shù)表示,通過代數(shù)方法解決幾何問題。

(高一數(shù)學(xué))上學(xué)期學(xué)問點(diǎn)復(fù)習(xí)

1.函數(shù)的奇偶性

(1)若f(x)是偶函數(shù),那么f(x)=f(-x);

(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

2023高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納全文共8頁,當(dāng)前為第4頁。(3)推斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所給函數(shù)的解析式較為簡(jiǎn)單,應(yīng)先化簡(jiǎn),再推斷其奇偶性;

(5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

2.復(fù)合函數(shù)的有關(guān)問題

(1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);討論函數(shù)的問題肯定要留意定義域優(yōu)先的原則。

(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

3.函數(shù)圖像(或方程曲線的對(duì)稱性)

(1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;

(2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;

(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0;

(5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;

2023高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納全文共8頁,當(dāng)前為第5頁。(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對(duì)稱;

4.函數(shù)的周期性

(1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2|a|的周期函數(shù);

(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4|a|的周期函數(shù);

(4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2的周期函數(shù);

(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

(6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

5.方程k=f(x)有解k∈D(D為f(x)的值域);

a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

(1)(a0,a≠1,b0,n∈R+);

(2)logaN=(a0,a≠1,b0,b≠1);

(3)logab的符號(hào)由口訣“同正異負(fù)”記憶;

(4)alogaN=N(a0,a≠1,N0);

6.推斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):

(1)A中元素必需都有象且;

2023高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納全文共8頁,當(dāng)前為第6頁。(2)B中元素不肯定都有原象,并且A中不同元素在B中可以有相同的象;

7.能嫻熟地用定義證明函數(shù)的單調(diào)性,求反函數(shù),推斷函數(shù)的奇偶性。

8.對(duì)于反函數(shù),應(yīng)把握以下一些結(jié)論:

(1)定義域上的單調(diào)函數(shù)必有反函數(shù);

(2)奇函數(shù)的反函數(shù)也是奇函數(shù);

(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);

(4)周期函數(shù)不存在反函數(shù);

(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;

(6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

9.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合

二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系;

10依據(jù)單調(diào)性

利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問題;

11恒成立問題的處理方法:

(1)分別參數(shù)法;

(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

練習(xí)題:

1.(-3,4)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為_________,關(guān)于y軸對(duì)稱的2023高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納全文共8頁,當(dāng)前為第7頁。點(diǎn)的坐標(biāo)為__________,

關(guān)于原點(diǎn)對(duì)稱的坐標(biāo)為__________.

2.點(diǎn)B(-5,-2)到x軸的距離是____,到y(tǒng)軸的距離是____,到原點(diǎn)的距離是____

3.以點(diǎn)(3,0)為圓心,半徑為5的圓與x軸交點(diǎn)坐標(biāo)為_________________,

與y軸交點(diǎn)坐標(biāo)為________________

4.點(diǎn)P(a-3,5-a)在第一象限內(nèi),則a的取值范圍是____________

5.小華用500元去購買單價(jià)為3元的一種商品,剩余的錢y(元)與購買這種商品的件數(shù)x(件)

之間的函數(shù)關(guān)系是______________,x的取值范圍是__________

6.函數(shù)y=的自變量x的取值范圍是________

7.當(dāng)a=____時(shí),函數(shù)y=x是正比例函數(shù)

8.函數(shù)y=-2x+4的圖象經(jīng)過___________象限,它與兩坐標(biāo)軸圍成的三角形面積為_________,

周長(zhǎng)為_______

9.一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)(1,5),交y軸于3,則k=____,b=____

10.若點(diǎn)(m,m+3)在函數(shù)y=-x+2的圖象上,則m=____

11.y與3x成正比例,當(dāng)x=8時(shí),y=-12,則y與x的函數(shù)解析式為___________

12.函數(shù)y=-x的圖象是一條過原點(diǎn)及(2,___)的直線,這條直線2023高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納全文共8頁,當(dāng)前為第8頁。經(jīng)過第_____象限,

當(dāng)x增大時(shí),y隨之________

13.函數(shù)y=2x-4,當(dāng)x_______,y0,b0,b0;C、k

高一數(shù)學(xué)必考學(xué)問點(diǎn)

1.“包含”關(guān)系—子集

留意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同”

結(jié)論:對(duì)于兩個(gè)集合A與B,假如集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

①任何一個(gè)集合是它本身的子集。AíA

②真子集:假如AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

③假如AíB,BíC,那么AíC

④假如AíB同時(shí)BíA那么A=B

3.不

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論