2024年?yáng)|北師大附屬中學(xué)數(shù)學(xué)高三上期末綜合測(cè)試模擬試題含解析_第1頁(yè)
2024年?yáng)|北師大附屬中學(xué)數(shù)學(xué)高三上期末綜合測(cè)試模擬試題含解析_第2頁(yè)
2024年?yáng)|北師大附屬中學(xué)數(shù)學(xué)高三上期末綜合測(cè)試模擬試題含解析_第3頁(yè)
2024年?yáng)|北師大附屬中學(xué)數(shù)學(xué)高三上期末綜合測(cè)試模擬試題含解析_第4頁(yè)
2024年?yáng)|北師大附屬中學(xué)數(shù)學(xué)高三上期末綜合測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024年?yáng)|北師大附屬中學(xué)數(shù)學(xué)高三上期末綜合測(cè)試模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線(xiàn)與直線(xiàn)則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.如圖,在中,點(diǎn),分別為,的中點(diǎn),若,,且滿(mǎn)足,則等于()A.2 B. C. D.3.已知函數(shù)若對(duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,則實(shí)數(shù)的取值范圍是()A. B. C. D.4.已知復(fù)數(shù)滿(mǎn)足(其中為的共軛復(fù)數(shù)),則的值為()A.1 B.2 C. D.5.某學(xué)校為了調(diào)查學(xué)生在課外讀物方面的支出情況,抽取了一個(gè)容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學(xué)有34人,則的值為()A.100 B.1000 C.90 D.906.已知展開(kāi)式的二項(xiàng)式系數(shù)和與展開(kāi)式中常數(shù)項(xiàng)相等,則項(xiàng)系數(shù)為()A.10 B.32 C.40 D.807.已知向量,滿(mǎn)足,在上投影為,則的最小值為()A. B. C. D.8.已知函數(shù),若曲線(xiàn)上始終存在兩點(diǎn),,使得,且的中點(diǎn)在軸上,則正實(shí)數(shù)的取值范圍為()A. B. C. D.9.已知三棱錐的外接球半徑為2,且球心為線(xiàn)段的中點(diǎn),則三棱錐的體積的最大值為()A. B. C. D.10.已知三棱錐P﹣ABC的頂點(diǎn)都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.11.如圖所示的程序框圖輸出的是126,則①應(yīng)為()A. B. C. D.12.等腰直角三角形BCD與等邊三角形ABD中,,,現(xiàn)將沿BD折起,則當(dāng)直線(xiàn)AD與平面BCD所成角為時(shí),直線(xiàn)AC與平面ABD所成角的正弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若在定義域內(nèi)恒有,則實(shí)數(shù)的取值范圍是__________.14.為激發(fā)學(xué)生團(tuán)結(jié)協(xié)作,敢于拼搏,不言放棄的精神,某校高三5個(gè)班進(jìn)行班級(jí)間的拔河比賽.每?jī)砂嘀g只比賽1場(chǎng),目前(—)班已賽了4場(chǎng),(二)班已賽了3場(chǎng),(三)班已賽了2場(chǎng),(四)班已賽了1場(chǎng).則目前(五)班已經(jīng)參加比賽的場(chǎng)次為_(kāi)_________.15.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積是______.16.四邊形中,,,,,則的最小值是______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)f(x)ax﹣lnx(a∈R).(1)若a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;(2)設(shè)g(x)=f(x)1,若函數(shù)g(x)在上有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.18.(12分)每年的寒冷天氣都會(huì)帶熱“御寒經(jīng)濟(jì)”,以交通業(yè)為例,當(dāng)天氣太冷時(shí),不少人都會(huì)選擇利用手機(jī)上的打車(chē)軟件在網(wǎng)上預(yù)約出租車(chē)出行,出租車(chē)公司的訂單數(shù)就會(huì)增加.下表是某出租車(chē)公司從出租車(chē)的訂單數(shù)據(jù)中抽取的5天的日平均氣溫(單位:℃)與網(wǎng)上預(yù)約出租車(chē)訂單數(shù)(單位:份);日平均氣溫(℃)642網(wǎng)上預(yù)約訂單數(shù)100135150185210(1)經(jīng)數(shù)據(jù)分析,一天內(nèi)平均氣溫與該出租車(chē)公司網(wǎng)約訂單數(shù)(份)成線(xiàn)性相關(guān)關(guān)系,試建立關(guān)于的回歸方程,并預(yù)測(cè)日平均氣溫為時(shí),該出租車(chē)公司的網(wǎng)約訂單數(shù);(2)天氣預(yù)報(bào)未來(lái)5天有3天日平均氣溫不高于,若把這5天的預(yù)測(cè)數(shù)據(jù)當(dāng)成真實(shí)的數(shù)據(jù),根據(jù)表格數(shù)據(jù),則從這5天中任意選取2天,求恰有1天網(wǎng)約訂單數(shù)不低于210份的概率.附:回歸直線(xiàn)的斜率和截距的最小二乘法估計(jì)分別為:19.(12分)已知函數(shù).(1)當(dāng)時(shí),求的單調(diào)區(qū)間.(2)設(shè)直線(xiàn)是曲線(xiàn)的切線(xiàn),若的斜率存在最小值-2,求的值,并求取得最小斜率時(shí)切線(xiàn)的方程.(3)已知分別在,處取得極值,求證:.20.(12分)如圖,已知四邊形的直角梯形,∥BC,,,,為線(xiàn)段的中點(diǎn),平面,,為線(xiàn)段上一點(diǎn)(不與端點(diǎn)重合).(1)若,(?。┣笞C:PC∥平面;(ⅱ)求平面與平面所成的銳二面角的余弦值;(2)否存在實(shí)數(shù)滿(mǎn)足,使得直線(xiàn)與平面所成的角的正弦值為,若存在,確定的值,若不存在,請(qǐng)說(shuō)明理由.21.(12分)已知函數(shù).(1)若,求的取值范圍;(2)若,對(duì),不等式恒成立,求的取值范圍.22.(10分)已知.(1)若是上的增函數(shù),求的取值范圍;(2)若函數(shù)有兩個(gè)極值點(diǎn),判斷函數(shù)零點(diǎn)的個(gè)數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

利用充分必要條件的定義可判斷兩個(gè)條件之間的關(guān)系.【詳解】若,則,故或,當(dāng)時(shí),直線(xiàn),直線(xiàn),此時(shí)兩條直線(xiàn)平行;當(dāng)時(shí),直線(xiàn),直線(xiàn),此時(shí)兩條直線(xiàn)平行.所以當(dāng)時(shí),推不出,故“”是“”的不充分條件,當(dāng)時(shí),可以推出,故“”是“”的必要條件,故選:B.【點(diǎn)睛】本題考查兩條直線(xiàn)的位置關(guān)系以及必要不充分條件的判斷,前者應(yīng)根據(jù)系數(shù)關(guān)系來(lái)考慮,后者依據(jù)兩個(gè)條件之間的推出關(guān)系,本題屬于中檔題.2、D【解析】

選取為基底,其他向量都用基底表示后進(jìn)行運(yùn)算.【詳解】由題意是的重心,,∴,,∴,故選:D.【點(diǎn)睛】本題考查向量的數(shù)量積,解題關(guān)鍵是選取兩個(gè)不共線(xiàn)向量作為基底,其他向量都用基底表示參與運(yùn)算,這樣做目標(biāo)明確,易于操作.3、C【解析】分析:先求導(dǎo),再對(duì)a分類(lèi)討論求函數(shù)的單調(diào)區(qū)間,再畫(huà)圖分析轉(zhuǎn)化對(duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,得到關(guān)于a的不等式組,再解不等式組得到實(shí)數(shù)a的取值范圍.詳解:由題得.當(dāng)a<1時(shí),,所以函數(shù)f(x)在單調(diào)遞減,因?yàn)閷?duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,所以,所以故a≥1,與a<1矛盾,故a<1矛盾.當(dāng)1≤a<e時(shí),函數(shù)f(x)在[0,lna]單調(diào)遞增,在(lna,1]單調(diào)遞減.所以因?yàn)閷?duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,所以,所以即令,所以所以函數(shù)g(a)在(1,e)上單調(diào)遞減,所以,所以當(dāng)1≤a<e時(shí),滿(mǎn)足題意.當(dāng)a時(shí),函數(shù)f(x)在(0,1)單調(diào)遞增,因?yàn)閷?duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,所以,故1+1,所以故綜上所述,a∈.故選C.點(diǎn)睛:本題的難點(diǎn)在于“對(duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有”的轉(zhuǎn)化.由于是函數(shù)的問(wèn)題,所以我們要聯(lián)想到利用函數(shù)的性質(zhì)(單調(diào)性、奇偶性、周期性、對(duì)稱(chēng)性、最值、極值等)來(lái)分析解答問(wèn)題.本題就是把這個(gè)條件和函數(shù)的單調(diào)性和最值聯(lián)系起來(lái),完成了數(shù)學(xué)問(wèn)題的等價(jià)轉(zhuǎn)化,找到了問(wèn)題的突破口.4、D【解析】

按照復(fù)數(shù)的運(yùn)算法則先求出,再寫(xiě)出,進(jìn)而求出.【詳解】,,.故選:D【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算、共軛復(fù)數(shù)及復(fù)數(shù)的模,考查基本運(yùn)算能力,屬于基礎(chǔ)題.5、A【解析】

利用頻率分布直方圖得到支出在的同學(xué)的頻率,再結(jié)合支出在(單位:元)的同學(xué)有34人,即得解【詳解】由題意,支出在(單位:元)的同學(xué)有34人由頻率分布直方圖可知,支出在的同學(xué)的頻率為.故選:A【點(diǎn)睛】本題考查了頻率分布直方圖的應(yīng)用,考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.6、D【解析】

根據(jù)二項(xiàng)式定理通項(xiàng)公式可得常數(shù)項(xiàng),然后二項(xiàng)式系數(shù)和,可得,最后依據(jù),可得結(jié)果.【詳解】由題可知:當(dāng)時(shí),常數(shù)項(xiàng)為又展開(kāi)式的二項(xiàng)式系數(shù)和為由所以當(dāng)時(shí),所以項(xiàng)系數(shù)為故選:D【點(diǎn)睛】本題考查二項(xiàng)式定理通項(xiàng)公式,熟悉公式,細(xì)心計(jì)算,屬基礎(chǔ)題.7、B【解析】

根據(jù)在上投影為,以及,可得;再對(duì)所求模長(zhǎng)進(jìn)行平方運(yùn)算,可將問(wèn)題轉(zhuǎn)化為模長(zhǎng)和夾角運(yùn)算,代入即可求得.【詳解】在上投影為,即又本題正確選項(xiàng):【點(diǎn)睛】本題考查向量模長(zhǎng)的運(yùn)算,對(duì)于含加減法運(yùn)算的向量模長(zhǎng)的求解,通常先求解模長(zhǎng)的平方,再開(kāi)平方求得結(jié)果;解題關(guān)鍵是需要通過(guò)夾角取值范圍的分析,得到的最小值.8、D【解析】

根據(jù)中點(diǎn)在軸上,設(shè)出兩點(diǎn)的坐標(biāo),,().對(duì)分成三類(lèi),利用則,列方程,化簡(jiǎn)后求得,利用導(dǎo)數(shù)求得的值域,由此求得的取值范圍.【詳解】根據(jù)條件可知,兩點(diǎn)的橫坐標(biāo)互為相反數(shù),不妨設(shè),,(),若,則,由,所以,即,方程無(wú)解;若,顯然不滿(mǎn)足;若,則,由,即,即,因?yàn)?,所以函?shù)在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數(shù)在上的值域?yàn)?,?故選D.【點(diǎn)睛】本小題主要考查平面平面向量數(shù)量積為零的坐標(biāo)表示,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查利用導(dǎo)數(shù)研究函數(shù)的最小值,考查分析與運(yùn)算能力,屬于較難的題目.9、C【解析】

由題可推斷出和都是直角三角形,設(shè)球心為,要使三棱錐的體積最大,則需滿(mǎn)足,結(jié)合幾何關(guān)系和圖形即可求解【詳解】先畫(huà)出圖形,由球心到各點(diǎn)距離相等可得,,故是直角三角形,設(shè),則有,又,所以,當(dāng)且僅當(dāng)時(shí),取最大值4,要使三棱錐體積最大,則需使高,此時(shí),故選:C【點(diǎn)睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問(wèn)題,屬于基礎(chǔ)題10、D【解析】

由題意畫(huà)出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過(guò)求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設(shè)AB的中點(diǎn)為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設(shè)外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【點(diǎn)睛】本題考查多面體外接球表面積的求法,考查數(shù)形結(jié)合的解題思想方法,考查思維能力與計(jì)算能力,屬于中檔題.11、B【解析】試題分析:分析程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿(mǎn)足循環(huán)的條件.解:分析程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿(mǎn)足循環(huán)的條件.∵S=2+22+…+21=121,故①中應(yīng)填n≤1.故選B點(diǎn)評(píng):算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個(gè)熱點(diǎn),應(yīng)高度重視.程序填空也是重要的考試題型,這種題考試的重點(diǎn)有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點(diǎn)考試的概率更大.此種題型的易忽略點(diǎn)是:不能準(zhǔn)確理解流程圖的含義而導(dǎo)致錯(cuò)誤.12、A【解析】

設(shè)E為BD中點(diǎn),連接AE、CE,過(guò)A作于點(diǎn)O,連接DO,得到即為直線(xiàn)AD與平面BCD所成角的平面角,根據(jù)題中條件求得相應(yīng)的量,分析得到即為直線(xiàn)AC與平面ABD所成角,進(jìn)而求得其正弦值,得到結(jié)果.【詳解】設(shè)E為BD中點(diǎn),連接AE、CE,由題可知,,所以平面,過(guò)A作于點(diǎn)O,連接DO,則平面,所以即為直線(xiàn)AD與平面BCD所成角的平面角,所以,可得,在中可得,又,即點(diǎn)O與點(diǎn)C重合,此時(shí)有平面,過(guò)C作與點(diǎn)F,又,所以,所以平面,從而角即為直線(xiàn)AC與平面ABD所成角,,故選:A.【點(diǎn)睛】該題考查的是有關(guān)平面圖形翻折問(wèn)題,涉及到的知識(shí)點(diǎn)有線(xiàn)面角的正弦值的求解,在解題的過(guò)程中,注意空間角的平面角的定義,屬于中檔題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)圖象可將原題轉(zhuǎn)化為恒成立問(wèn)題,湊而可知的圖象在過(guò)原點(diǎn)且與兩函數(shù)相切的兩條切線(xiàn)之間;利用過(guò)一點(diǎn)的曲線(xiàn)切線(xiàn)的求法可求得兩切線(xiàn)斜率,結(jié)合分母不為零的條件可最終確定的取值范圍.【詳解】由指數(shù)函數(shù)與對(duì)數(shù)函數(shù)圖象可知:,恒成立可轉(zhuǎn)化為恒成立,即恒成立,,即是夾在函數(shù)與的圖象之間,的圖象在過(guò)原點(diǎn)且與兩函數(shù)相切的兩條切線(xiàn)之間.設(shè)過(guò)原點(diǎn)且與相切的直線(xiàn)與函數(shù)相切于點(diǎn),則切線(xiàn)斜率,解得:;設(shè)過(guò)原點(diǎn)且與相切的直線(xiàn)與函數(shù)相切于點(diǎn),則切線(xiàn)斜率,解得:;當(dāng)時(shí),,又,滿(mǎn)足題意;綜上所述:實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查恒成立問(wèn)題的求解,重點(diǎn)考查了導(dǎo)數(shù)幾何意義應(yīng)用中的過(guò)一點(diǎn)的曲線(xiàn)切線(xiàn)的求解方法;關(guān)鍵是能夠結(jié)合指數(shù)函數(shù)和對(duì)數(shù)函數(shù)圖象將問(wèn)題轉(zhuǎn)化為切線(xiàn)斜率的求解問(wèn)題;易錯(cuò)點(diǎn)是忽略分母不為零的限制,忽略對(duì)于臨界值能否取得的討論.14、2【解析】

根據(jù)比賽場(chǎng)次,分析,畫(huà)出圖象,計(jì)算結(jié)果.【詳解】畫(huà)圖所示,可知目前(五)班已經(jīng)賽了2場(chǎng).故答案為:2【點(diǎn)睛】本題考查推理,計(jì)數(shù)原理的圖形表示,意在考查數(shù)形結(jié)合分析問(wèn)題的能力,屬于基礎(chǔ)題型.15、【解析】

先由三視圖在長(zhǎng)方體中將其還原成直觀(guān)圖,再利用球的直徑是長(zhǎng)方體體對(duì)角線(xiàn)即可解決.【詳解】由三視圖知該幾何體是一個(gè)三棱錐,如圖所示長(zhǎng)方體對(duì)角線(xiàn)長(zhǎng)為,所以三棱錐外接球半徑為,故所求外接球的表面積.故答案為:.【點(diǎn)睛】本題考查幾何體三視圖以及幾何體外接球的表面積,考查學(xué)生空間想象能力以及基本計(jì)算能力,是一道基礎(chǔ)題.16、【解析】

在中利用正弦定理得出,進(jìn)而可知,當(dāng)時(shí),取最小值,進(jìn)而計(jì)算出結(jié)果.【詳解】,如圖,在中,由正弦定理可得,即,故當(dāng)時(shí),取到最小值為.故答案為:.【點(diǎn)睛】本題考查解三角形,同時(shí)也考查了常見(jiàn)的三角函數(shù)值,考查邏輯推理能力與計(jì)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)單調(diào)遞減區(qū)間為(0,1),單調(diào)遞增區(qū)間為(1,+∞)(2)(3,2e]【解析】

(1)當(dāng)a=2時(shí),求出,求解,即可得出結(jié)論;(2)函數(shù)在上有兩個(gè)零點(diǎn)等價(jià)于a=2x在上有兩解,構(gòu)造函數(shù),,利用導(dǎo)數(shù),可分析求得實(shí)數(shù)a的取值范圍.【詳解】(1)當(dāng)a=2時(shí),定義域?yàn)?,則,令,解得x1,或x1(舍去),所以當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增;故函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,(2)設(shè),函數(shù)g(x)在上有兩個(gè)零點(diǎn)等價(jià)于在上有兩解令,,則,令,,顯然,在區(qū)間上單調(diào)遞增,又,所以當(dāng)時(shí),有,即,當(dāng)時(shí),有,即,所以在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,時(shí),取得極小值,也是最小值,即,由方程在上有兩解及,可得實(shí)數(shù)a的取值范圍是.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、等價(jià)轉(zhuǎn)化思想以及數(shù)形結(jié)合思想,考查邏輯推理、數(shù)學(xué)計(jì)算能力,屬于中檔題.18、(1),232;(2)【解析】

(1)根據(jù)公式代入求解;(2)先列出基本事件空間,再列出要求的事件,最后求概率即可.【詳解】解:(1)由表格可求出代入公式求出,所以,所以當(dāng)時(shí),.所以可預(yù)測(cè)日平均氣溫為時(shí)該出租車(chē)公司的網(wǎng)約訂單數(shù)約為232份.(2)記這5天中氣溫不高于的三天分別為,另外兩天分別記為,則在這5天中任意選取2天有,共10個(gè)基本事件,其中恰有1天網(wǎng)約訂單數(shù)不低于210份的有,共6個(gè)基本事件,所以所求概率,即恰有1天網(wǎng)約訂單數(shù)不低于20份的概率為.【點(diǎn)睛】考查線(xiàn)性回歸系數(shù)的求法以及古典概型求概率的方法,中檔題.19、(1)單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;(2),;(3)證明見(jiàn)解析.【解析】

(1)由的正負(fù)可確定的單調(diào)區(qū)間;(2)利用基本不等式可求得時(shí),取得最小值,由導(dǎo)數(shù)的幾何意義可知,從而求得,求得切點(diǎn)坐標(biāo)后,可得到切線(xiàn)方程;(3)由極值點(diǎn)的定義可知是的兩個(gè)不等正根,由判別式大于零得到的取值范圍,同時(shí)得到韋達(dá)定理的形式;化簡(jiǎn)為,結(jié)合的范圍可證得結(jié)論.【詳解】(1)由題意得:的定義域?yàn)?,?dāng)時(shí),,,當(dāng)和時(shí),;當(dāng)時(shí),,的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.(2),所以(當(dāng)且僅當(dāng),即時(shí)取等號(hào)),切線(xiàn)的斜率存在最小值,,解得:,,即切點(diǎn)為,從而切線(xiàn)方程,即:.(3),分別在,處取得極值,,是方程,即的兩個(gè)不等正根.則,解得:,且,.,,,即不等式成立.【點(diǎn)睛】本題考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,涉及到利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間、導(dǎo)數(shù)幾何意義的應(yīng)用、利用導(dǎo)數(shù)證明不等式等知識(shí);本題中證明不等式的關(guān)鍵是能夠通過(guò)極值點(diǎn)的定義將問(wèn)題轉(zhuǎn)變?yōu)橐辉畏匠谈姆植紗?wèn)題.20、(1)(?。┳C明見(jiàn)解析(ⅱ)(2)存在,【解析】

(1)(i)連接交于點(diǎn),連接,,依題意易證四邊形為平行四邊形,從而有,,由此能證明PC∥平面(ii)推導(dǎo)出,以為原點(diǎn)建立空間直角坐標(biāo)系,利用向量法求解;(2)設(shè),求出平面的法向量,利用向量法求解.【詳解】(1)(?。┳C明:連接交于點(diǎn),連接,,因?yàn)闉榫€(xiàn)段的中點(diǎn),所以,因?yàn)?,所以因?yàn)椤嗡运倪呅螢槠叫兴倪呅危杂忠驗(yàn)?,所以又因?yàn)槠矫妫矫?,所以平面.(ⅱ)解:如圖,在平行四邊形中因?yàn)?,,所以以為原點(diǎn)建立空間直角坐標(biāo)系則,,,所以,,,平面的法向量為設(shè)平面的法向量為,則,即,取,得,設(shè)平面和平面所成的銳二面角為,則所以銳二面角的余弦值為(2)設(shè)所以,,設(shè)平面的法向量為,則,取,得,因?yàn)橹本€(xiàn)與平面所成的角的正弦值為,所以解得所以存在滿(mǎn)足,使得直線(xiàn)與平面所成的角的正弦值為.【點(diǎn)睛】此題二查線(xiàn)面平行的證明,考查銳二面角的余弦值的求法,考查滿(mǎn)足線(xiàn)面角的正弦值的點(diǎn)是否存在的判斷與求法,考查空間中線(xiàn)線(xiàn),線(xiàn)面,面面的位置關(guān)系等知識(shí),考查了推理能力與計(jì)算能力,屬于中檔

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論