高考數(shù)學(xué)總復(fù)習(xí)簡(jiǎn)單的三角恒等變換理-A3演示文稿設(shè)計(jì)與制作_第1頁(yè)
高考數(shù)學(xué)總復(fù)習(xí)簡(jiǎn)單的三角恒等變換理-A3演示文稿設(shè)計(jì)與制作_第2頁(yè)
高考數(shù)學(xué)總復(fù)習(xí)簡(jiǎn)單的三角恒等變換理-A3演示文稿設(shè)計(jì)與制作_第3頁(yè)
高考數(shù)學(xué)總復(fù)習(xí)簡(jiǎn)單的三角恒等變換理-A3演示文稿設(shè)計(jì)與制作_第4頁(yè)
高考數(shù)學(xué)總復(fù)習(xí)簡(jiǎn)單的三角恒等變換理-A3演示文稿設(shè)計(jì)與制作_第5頁(yè)
已閱讀5頁(yè),還剩78頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高考數(shù)學(xué)總復(fù)習(xí)第3章§3.4簡(jiǎn)單的三角恒等變換理-A3演示文稿設(shè)計(jì)與制作§3.4簡(jiǎn)單的三角恒等變換

考點(diǎn)探究?挑戰(zhàn)高考考向瞭望?把脈高考§3.4簡(jiǎn)單的三角恒等變換雙基研習(xí)?面對(duì)高考雙基研習(xí)?面對(duì)高考基礎(chǔ)梳理2sinαcosα2cos2α

-1思考感悟答案:D課前熱身答案:B3.(2011年江門質(zhì)檢)已知sin10°=a,則sin70°等于(

)A.1-2a2 B.1+2a2C.1-a2 D.a(chǎn)2-1答案:A考點(diǎn)探究?挑戰(zhàn)高考考點(diǎn)突破考點(diǎn)一運(yùn)用倍、半角公式求值利用倍、半角公式求值的關(guān)鍵在于轉(zhuǎn)化,將未知向已知轉(zhuǎn)化或?qū)⒎翘厥饨寝D(zhuǎn)化為特殊角,并且消除非特殊角的三角函數(shù)而得解.例1【思路點(diǎn)撥】逆用倍角公式求值.【名師點(diǎn)評(píng)】

在運(yùn)用倍角、半角公式求值時(shí),應(yīng)注意二倍角公式與兩角和公式的內(nèi)在聯(lián)系,準(zhǔn)確理解倍角公式中角度之間的“二倍”關(guān)系,這樣有助于我們靈活運(yùn)用公式進(jìn)行化簡(jiǎn)求值.對(duì)于和式,基本思路是降次、消項(xiàng)和逆用公式;對(duì)于三角分式,基本思路是分子與分母約分或逆用公式;對(duì)于二次根式,注意二倍角公式的逆用.另外,還可以用切割化弦、變量代換、角度歸一等方法.考點(diǎn)二三角函數(shù)式的化簡(jiǎn)(1)將f(θ)表示成關(guān)于cosθ的多項(xiàng)式;(2)a∈R,試求使曲線y=acosθ+a與曲線y=f(θ)至少有一個(gè)交點(diǎn)時(shí)a的取值范圍.例2【思路點(diǎn)撥】本題以函數(shù)形式給出三角函數(shù)式,第(1)問(wèn)實(shí)質(zhì)上是化簡(jiǎn)三角函數(shù)式,第(2)問(wèn)可讓兩曲線方程右端相等,得方程有解既可.【規(guī)律小結(jié)】三角函數(shù)式化簡(jiǎn)的要求:①能求出值的應(yīng)求出值;②盡量使三角函數(shù)種數(shù)最少;③盡量使項(xiàng)數(shù)最少;④盡量使分母不含三角函數(shù);⑤盡量使被開(kāi)方數(shù)不含三角函數(shù).1.證明三角恒等式的方法觀察等式兩邊的差異(角、函數(shù)、運(yùn)算的差異),從解決某一差異入手(同時(shí)消除其他差異),確定從該等式的哪邊證明(也可兩邊同時(shí)化簡(jiǎn)),當(dāng)從解決差異方面不易入手時(shí),可采用轉(zhuǎn)換命題法或用分析法等.考點(diǎn)三三角函數(shù)式的證明2.證明三角條件等式的方法首先觀察條件與結(jié)論的差異,從解決這一差異入手,確定從結(jié)論開(kāi)始,通過(guò)變換,將已知表達(dá)式代入得出結(jié)論,或通過(guò)變換已知條件得出結(jié)論,如果這兩種方法都證不出來(lái),可采用分析法;如果已知條件含參數(shù),可采用消去參數(shù)法;如果已知條件是連比的式子,可采用換元法等.例3【名師點(diǎn)評(píng)】證明三角恒等式時(shí)要注意觀察分析函數(shù)名稱、角在恒等式兩端的異同,這樣才能確定變換的方向.三角恒等式的證明一般方法較多,要善于選擇最簡(jiǎn)捷的方法進(jìn)行證明.變式訓(xùn)練證明:sin3xsin3x+cos3xcos3x=cos32x.方法技巧1.三角恒等變形可以歸納為以下三步(1)找到差異:主要是指角、函數(shù)名稱和運(yùn)算間的差異;(2)抓住聯(lián)系:即利用有關(guān)公式,建立差異間的聯(lián)系;(3)促進(jìn)轉(zhuǎn)化:就是靈活選擇公式,促使差異轉(zhuǎn)化,以達(dá)到簡(jiǎn)化統(tǒng)一的目的.(如例2)方法感悟2.化簡(jiǎn)的方法弦切互化,異名化同名,異角化同角,降冪或升冪等.(如例3)3.三角恒等式的證明實(shí)質(zhì)上也是一個(gè)化簡(jiǎn)過(guò)程,因此我們?nèi)匀灰⒁馊呛愕茸儞Q思想方法的靈活運(yùn)用.不同于化簡(jiǎn)求值問(wèn)題的地方是化簡(jiǎn)不是隨意化簡(jiǎn),而是要等于等式的另一端,因此在化簡(jiǎn)過(guò)程中,必須強(qiáng)化“目標(biāo)意識(shí)”,也就是每化簡(jiǎn)一步要盡量向其目標(biāo)靠攏.(如例3)解決給式(值)求值問(wèn)題要注意以下幾點(diǎn):(1)注意整體思想在解題中的應(yīng)用;(2)注意觀察和分析問(wèn)題中各角之間的內(nèi)在聯(lián)系,把待求角用已知角表示出來(lái);(3)注意條件中角的范圍對(duì)三角函數(shù)值的制約作用,確定所涉及的每一個(gè)角的范圍,以免出現(xiàn)增、漏解.失誤防范考情分析考向瞭望?把脈高考二倍角公式是高考的熱點(diǎn),考查重點(diǎn)是利用二倍角公式求值,求角的大小,與三角函數(shù)的求值、化簡(jiǎn)交匯命題,既有小題,又有解答題,難度為中檔,主要考查公式的靈活運(yùn)用及恒等變形能力.預(yù)測(cè)2012年高考仍將以二倍角公式在三角恒等變形中的應(yīng)用為主要考點(diǎn),重點(diǎn)考查轉(zhuǎn)化化歸的數(shù)學(xué)思想.規(guī)范解答例名師預(yù)測(cè)感謝觀看謝謝大家A3演示文稿設(shè)計(jì)與制作信息技術(shù)2.0微能力認(rèn)證作業(yè)中小學(xué)教師繼續(xù)教育參考資料高考數(shù)學(xué)總復(fù)習(xí)第課時(shí)直接證明與間接證明文-A3演示文稿設(shè)計(jì)與制作第6課時(shí)直接證明與間接證明第6課時(shí)直接證明與間接證明考點(diǎn)探究·挑戰(zhàn)高考考向瞭望·把脈高考溫故夯基·面對(duì)高考溫故夯基·面對(duì)高考證明的結(jié)論推理論證成立充分條件內(nèi)容綜合法分析法文字語(yǔ)言因?yàn)椤浴蛴伞谩C…只需證即證…思考感悟綜合法和分析法的區(qū)別與聯(lián)系是什么?提示:綜合法的特點(diǎn)是:從“已知”看“可知”,逐步推向“未知”.其逐步推理實(shí)際上是尋找它的必要條件.分析法的特點(diǎn)是:從“未知”看“需知”,逐步靠攏“已知”.其逐步推理實(shí)際上是尋求它的充分條件.在解決問(wèn)題時(shí),經(jīng)常把綜合法和分析法綜合起來(lái)使用.2.間接證明反證法:假設(shè)原命題_______

(即在原命題的條件下,結(jié)論不成立),經(jīng)過(guò)正確的推理,最后得出_____.因此說(shuō)明假設(shè)錯(cuò)誤,從而證明了原命題成立,這樣的證明方法叫做反證法.不成立矛盾考點(diǎn)探究·挑戰(zhàn)高考綜合法考點(diǎn)一考點(diǎn)突破綜合法是“由因?qū)Ч?,它是從已知條件出發(fā),順著推證,經(jīng)過(guò)一系列的中間推理,最后導(dǎo)出所證結(jié)論的真實(shí)性.用綜合法證明的邏輯關(guān)系是:A?B1?B2?…?Bn?B(A為已知條件或數(shù)學(xué)定義、定理、公理等,B為要證結(jié)論),它的常見(jiàn)書面表達(dá)是“∵,∴”或“?”.例1分析法考點(diǎn)二分析法是“執(zhí)果索因”,一步步尋求上一步成立的充分條件.它是從要求證的結(jié)論出發(fā),倒著分析,由未知想需知,由需知逐漸地靠近已知(已知條件,已經(jīng)學(xué)過(guò)的定義、定理、公理、公式、法則等).用分析法證明命題的邏輯關(guān)系是:B?B1?B2?…?Bn?A.它的常見(jiàn)書面表達(dá)是“要證……只需……”或“?”.例2【思路分析】

ab?a·b=0,利用a2=|a|2求證.平方得|a|2+|b|2+2|a||b|≤2(|a|2+|b|2-2a·b),只需證|a|2+|b|2-2|a||b|≥0,即(|a|-|b|)2≥0,顯然成立.故原不等式得證.【誤區(qū)警示】本題從要證明的結(jié)論出發(fā),探求使結(jié)論成立的充分條件,最后找到的恰恰都是已證的命題(定義、公理、定理、法則、公式等)或要證命題的已知條件時(shí),命題得證.這正是分析法證明問(wèn)題的一般思路.一般地,含有根號(hào)、絕對(duì)值的等式或不等式,若從正面不易推導(dǎo)時(shí),可以考慮用分析法.反證法考點(diǎn)三反證法體現(xiàn)了正難則反的思維方法,用反證法證明問(wèn)題的一般步驟是:(1)分清問(wèn)題的條件和結(jié)論;(2)假定所要證的結(jié)論不成立,而設(shè)結(jié)論的反面成立(否定結(jié)論);(3)從假設(shè)和條件出發(fā),經(jīng)過(guò)正確的推理,導(dǎo)出與已知條件、公理、定理、定義及明顯成立的事實(shí)相矛盾或自相矛盾(推導(dǎo)矛盾);(4)因?yàn)橥评碚_,所以斷定產(chǎn)生矛盾的原因是“假設(shè)”錯(cuò)誤.既然結(jié)論的反面不成立,從而證明了原結(jié)論成立(結(jié)論成立).例3【思路分析】

(1)利用求和公式先求公差d,(2)利用反證法證明.【名師點(diǎn)評(píng)】當(dāng)一個(gè)命題的結(jié)論是以“至多”、“至少”、“唯一”或以否定形式出現(xiàn)時(shí),宜用反證法來(lái)證,反證法的關(guān)鍵是在正確的推理下得出矛盾,矛盾可以是與已知條件矛盾,與假設(shè)矛盾,與定義、公理、定理矛盾,與事實(shí)矛盾等,反證法常常是解決某些“疑難”問(wèn)題的有力工具,是數(shù)學(xué)證明中的一件有力武器.方法感悟方法技巧1.分析法和綜合法各有優(yōu)缺點(diǎn).分析法思考起來(lái)比較自然,容易尋找到解題的思路和方法,缺點(diǎn)是思路逆行,敘述較繁瑣;綜合法從條件推出結(jié)論,較簡(jiǎn)潔地解決問(wèn)題,但不便于思考.實(shí)際證題時(shí)常常兩法兼用,先用分析法探索證明途徑,然后再用綜合法敘述出來(lái).2.利用反證法證明數(shù)學(xué)問(wèn)題時(shí),要假設(shè)結(jié)論錯(cuò)誤,并用假設(shè)命題進(jìn)行推理,沒(méi)有用假設(shè)命題推理而推出矛盾結(jié)果,其推理過(guò)程是錯(cuò)誤的.3.用分析法證明數(shù)學(xué)問(wèn)題時(shí),要注意書寫格式的規(guī)范性,常常用“要證(欲證)”…“即要證”…“就要證”等分析得到一個(gè)明顯成立的結(jié)論P(yáng),再說(shuō)明所要證明的數(shù)學(xué)問(wèn)題成立.失誤防范1.反證法證明中要注意的問(wèn)題(1)必須先否定結(jié)論,即肯定結(jié)論的反面,當(dāng)結(jié)論的反面呈現(xiàn)多樣性時(shí),必須羅列出各種可能結(jié)論,缺少任何一種可能,反證都是不完全的;(2)反證法必須從否定結(jié)論進(jìn)行推理,即應(yīng)把結(jié)論的反面作為條件,且必須根據(jù)這一條件進(jìn)行推證,否則,僅否定結(jié)論,不從結(jié)論的反面出發(fā)進(jìn)行推理,就不是反證法;(3)推導(dǎo)出的矛盾可能多種多樣,有的與已知矛盾,有的與假設(shè)矛盾,有的與事實(shí)矛盾等,推導(dǎo)出的矛盾必須是明顯的.2.常見(jiàn)的“結(jié)論詞”與“反設(shè)詞”原結(jié)論詞反設(shè)詞原結(jié)論詞反設(shè)詞至少有一個(gè)一個(gè)也沒(méi)有對(duì)所有x成立存在某個(gè)x不成立至多有一個(gè)至少有兩個(gè)對(duì)任意x不成立存在某個(gè)x成立至少有n個(gè)至多有n-1個(gè)p或q綈p且綈q至多有n個(gè)至少有n+1個(gè)p且q綈p或綈q考向瞭望·把脈高考考情分析從近幾年的高考試題來(lái)看,綜合法、反證法證明問(wèn)題是高考的熱點(diǎn),題型大多為解答題,難度為中、高檔;主要是在知識(shí)交匯點(diǎn)處命題,像數(shù)列,立體幾何中的平行、垂直,不等式,解析幾何等都有可能考查,在考查數(shù)學(xué)基本概念的同時(shí),注重考查等價(jià)轉(zhuǎn)化、分類討論思想以及學(xué)生的邏輯推理能力.預(yù)測(cè)2012年廣東高考仍將以綜合法證明為主要考點(diǎn),偶爾會(huì)出現(xiàn)反證法證明的題目,重點(diǎn)考查運(yùn)算能力與邏輯推理能力.規(guī)范解答例【名師點(diǎn)評(píng)】本題考查了數(shù)列的計(jì)算及反證法的證明,試題為中高檔題,易誤點(diǎn)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論