2023年福建省泉州市惠安縣第十六中學(xué)高二數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第1頁
2023年福建省泉州市惠安縣第十六中學(xué)高二數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第2頁
2023年福建省泉州市惠安縣第十六中學(xué)高二數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第3頁
2023年福建省泉州市惠安縣第十六中學(xué)高二數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第4頁
2023年福建省泉州市惠安縣第十六中學(xué)高二數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023高二下數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,表示三個(gè)開關(guān),設(shè)在某段時(shí)間內(nèi)它們正常工作的概率分別是0.9、0.8、0.7,那么該系統(tǒng)正常工作的概率是().A.0.994 B.0.686 C.0.504 D.0.4962.一個(gè)三棱錐的正視圖和側(cè)視圖如圖所示(均為真角三角形),則該三棱錐的體積為()A.4 B.8 C.16 D.243.設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則復(fù)數(shù)()A. B.C. D.4.設(shè),則“”是“”的A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件5.已知,則下列結(jié)論中錯(cuò)誤的是()A.B..C.D.6.即將畢業(yè),4名同學(xué)與數(shù)學(xué)老師共5人站成一排照相,要求數(shù)學(xué)老師站中間,則不同的站法種數(shù)是A.120 B.96 C.36 D.247.已知定圓,,定點(diǎn),動(dòng)圓滿足與外切且與內(nèi)切,則的最大值為()A. B. C. D.8.已知,是雙曲線的上、下兩個(gè)焦點(diǎn),的直線與雙曲線的上下兩支分別交于點(diǎn),,若為等邊三角形,則雙曲線的漸近線方程為()A. B. C. D.9.“”是“圓:與圓:外切”的()A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分條件也不必要條件10.下列命題錯(cuò)誤的是()A.命題“若,則”的逆否命題為“若,則”B.若為假命題,則均為假命題C.對(duì)于命題:,使得,則:,均有D.“”是“”的充分不必要條件11.設(shè)P,Q分別是圓和橢圓上的點(diǎn),則P,Q兩點(diǎn)間的最大距離是()A. B.C. D.12.觀察下列等式,13+23=32,13+23+33=62,13+23+33+43=102,根據(jù)上述規(guī)律,13+23+33+43+53+63=()A.192 B.202 C.212 D.222二、填空題:本題共4小題,每小題5分,共20分。13.已知直線過點(diǎn),且它的一個(gè)方向向量為,則原點(diǎn)到直線的距離為______.14.已知點(diǎn),,若直線上存在點(diǎn),使得,則稱該直線為“型直線”.給出下列直線:(1);(2);(3);(4)其中所有是“型直線”的序號(hào)為______.15.如圖①,矩形的邊,直角三角形的邊,,沿把三角形折起,構(gòu)成四棱錐,使得在平面內(nèi)的射影落在線段上,如圖②,則這個(gè)四棱錐的體積的最大值為__________.16.已知函數(shù)為自然對(duì)數(shù)的底數(shù)與的圖象上存在關(guān)于軸對(duì)稱的點(diǎn),則實(shí)數(shù)的最小值是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓的左焦點(diǎn)為,上頂點(diǎn)為.已知橢圓的短軸長(zhǎng)為4,離心率為.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)點(diǎn)在橢圓上,且異于橢圓的上、下頂點(diǎn),點(diǎn)為直線與軸的交點(diǎn),點(diǎn)在軸的負(fù)半軸上.若(為原點(diǎn)),且,求直線的斜率.18.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),解不等式;(2)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.19.(12分)已知,,.求與的夾角;若,,,,且與交于點(diǎn),求.20.(12分)已知橢圓C:的離心率為,且過點(diǎn).求橢圓的標(biāo)準(zhǔn)方程;設(shè)直線l經(jīng)過點(diǎn)且與橢圓C交于不同的兩點(diǎn)M,N試問:在x軸上是否存在點(diǎn)Q,使得直線QM與直線QN的斜率的和為定值?若存在,求出點(diǎn)Q的坐標(biāo)及定值,若不存在,請(qǐng)說明理由.21.(12分)已知函數(shù).(1)若函數(shù)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍;(2)若在上恒成立,求實(shí)數(shù)的取值范圍.22.(10分)已知數(shù)列滿足,(1)求,并猜想的通項(xiàng)公式;(2)用數(shù)學(xué)歸納法證明(1)中所得的猜想.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

由題中意思可知,當(dāng)、元件至少有一個(gè)在工作,且元件在工作時(shí),該系統(tǒng)正常公式,再利用獨(dú)立事件的概率乘法公式可得出所求事件的概率.【詳解】由題意可知,該系統(tǒng)正常工作時(shí),、元件至少有一個(gè)在工作,且元件在元件,當(dāng)、元件至少有一個(gè)在工作時(shí),其概率為,由獨(dú)立事件的概率乘法公式可知,該系統(tǒng)正常工作的概率為,故選B.【點(diǎn)睛】本題考查獨(dú)立事件的概率乘法公式,解題時(shí)要弄清楚各事件之間的關(guān)系,在處理至少等問題時(shí),可利用對(duì)立事件的概率來計(jì)算,考查計(jì)算能力,屬于中等題.2、B【解析】

根據(jù)三視圖知,三棱錐的一條長(zhǎng)為6的側(cè)棱與底面垂直,底面是直角邊為2、4的直角三角形,利用棱錐的體積公式計(jì)算即可.【詳解】由三視圖知三棱錐的側(cè)棱與底垂直,其直觀圖如圖,可得其俯視圖是直角三角形,直角邊長(zhǎng)為2,4,,棱錐的體積,故選B.【點(diǎn)睛】本題利用空間幾何體的三視圖重點(diǎn)考查學(xué)生的空間想象能力和抽象思維能力,屬于中檔題.三視圖問題是考查學(xué)生空間想象能力最常見題型,也是高考熱點(diǎn).觀察三視圖并將其“翻譯”成直觀圖是解題的關(guān)鍵,不但要注意三視圖的三要素“高平齊,長(zhǎng)對(duì)正,寬相等”,還要特別注意實(shí)線與虛線以及相同圖形的不同位置對(duì)幾何體直觀圖的影響,對(duì)簡(jiǎn)單組合體三視圖問題,先看俯視圖確定底面的形狀,根據(jù)正視圖和側(cè)視圖,確定組合體的形狀.3、A【解析】

利用復(fù)數(shù)的代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求出數(shù)復(fù)數(shù),即可得到答案.【詳解】復(fù)數(shù)滿足,則,所以復(fù)數(shù).故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的模、共軛復(fù)數(shù)的概念,考查運(yùn)算求解能力.4、B【解析】

根據(jù)絕對(duì)值不等式和三次不等式的解法得到解集,根據(jù)小范圍可推大范圍,大范圍不能推小范圍得到結(jié)果.【詳解】解得到,解,得到,由則一定有;反之,則不一定有;故“”是“”的充分不必要條件.故答案為:B.【點(diǎn)睛】判斷充要條件的方法是:①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;④若p?q為假命題且q?p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.5、C【解析】試題分析:,當(dāng)時(shí),,單調(diào)遞減,同理當(dāng)時(shí),單調(diào)遞增,,顯然不等式有正數(shù)解(如,(當(dāng)然可以證明時(shí),)),即存在,使,因此C錯(cuò)誤.考點(diǎn):存在性量詞與全稱量詞,導(dǎo)數(shù)與函數(shù)的最值、函數(shù)的單調(diào)性.6、D【解析】分析:數(shù)學(xué)老師位置固定,只需要排學(xué)生的位置即可.詳解:根據(jù)題意得到數(shù)學(xué)老師位置固定,其他4個(gè)學(xué)生位置任意,故方法種數(shù)有種,即24種.故答案為:D.點(diǎn)睛:解答排列、組合問題的角度:解答排列、組合應(yīng)用題要從“分析”、“分辨”、“分類”、“分步”的角度入手.(1)“分析”就是找出題目的條件、結(jié)論,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨別是排列還是組合,對(duì)某些元素的位置有、無限制等;(3)“分類”就是將較復(fù)雜的應(yīng)用題中的元素分成互相排斥的幾類,然后逐類解決;(4)“分步”就是把問題化成幾個(gè)互相聯(lián)系的步驟,而每一步都是簡(jiǎn)單的排列、組合問題,然后逐步解決.7、A【解析】

將動(dòng)圓的軌跡方程表示出來:,利用橢圓的性質(zhì)將距離轉(zhuǎn)化,最后利用距離關(guān)系得到最值.【詳解】定圓,,動(dòng)圓滿足與外切且與內(nèi)切設(shè)動(dòng)圓半徑為,則表示橢圓,軌跡方程為:故答案選A【點(diǎn)睛】本題考查了軌跡方程,橢圓的性質(zhì),利用橢圓性質(zhì)變換長(zhǎng)度關(guān)系是解題的關(guān)鍵.8、D【解析】根據(jù)雙曲線的定義,可得是等邊三角形,即∴即

即又

0°即解得由此可得雙曲線的漸近線方程為.故選D.【點(diǎn)睛】本題主要考查雙曲線的定義和簡(jiǎn)單幾何性質(zhì)等知識(shí),根據(jù)條件求出a,b的關(guān)系是解決本題的關(guān)鍵.9、B【解析】

由圓:與圓:外切可得,圓心到圓心的距離是求出的值,然后判斷兩個(gè)命題之間的關(guān)系?!驹斀狻坑蓤A:與圓:外切可得,圓心到圓心的距離是即可得所以“”是“圓:與圓:外切”的充分不必要條件。【點(diǎn)睛】本題考查了兩個(gè)圓的位置關(guān)系及兩個(gè)命題之間的關(guān)系,考查計(jì)算能力,轉(zhuǎn)化思想。屬于中檔題。10、B【解析】

由原命題與逆否命題的關(guān)系即可判斷A;由復(fù)合命題的真值表即可判斷B;由特稱命題的否定是全稱命題即可判斷C;根據(jù)充分必要條件的定義即可判斷D;.【詳解】A.命題:“若p則q”的逆否命題為:“若¬q則¬p”,故A正確;B.若p∧q為假命題,則p,q中至少有一個(gè)為假命題,故B錯(cuò).C.由含有一個(gè)量詞的命題的否定形式得,命題p:?x∈R,使得x2+x+1<0,則¬p為:?x∈R,均有x2+x+1≥0,故C正確;D.由x2﹣3x+2>0解得,x>2或x<1,故x>2可推出x2﹣3x+2>0,但x2﹣3x+2>0推不出x>2,故“x>2”是“x2﹣3x+2>0”的充分不必要條件,即D正確故選:B.【點(diǎn)睛】本題考查簡(jiǎn)易邏輯的基礎(chǔ)知識(shí):四種命題及關(guān)系,充分必要條件的定義,復(fù)合命題的真假和含有一個(gè)量詞的命題的否定,這里要區(qū)別否命題的形式,本題是一道基礎(chǔ)題.11、C【解析】

求出橢圓上的點(diǎn)與圓心的最大距離,加上半徑,即可得出P,Q兩點(diǎn)間的最大距離.【詳解】圓的圓心為M(0,6),半徑為,設(shè),則,即,∴當(dāng)時(shí),,故的最大值為.故選C.【點(diǎn)睛】本題考查了橢圓與圓的綜合,圓外任意一點(diǎn)到圓的最大距離是這個(gè)點(diǎn)到圓心的距離與圓的半徑之和,根據(jù)圓外點(diǎn)在橢圓上,即可列出橢圓上一點(diǎn)到圓心的距離的解析式,結(jié)合函數(shù)最值,即可求得橢圓上一點(diǎn)到圓上一點(diǎn)的最大值.12、C【解析】∵所給等式左邊的底數(shù)依次分別為1,2;1,2,3;1,2,3,4;

右邊的底數(shù)依次分別為3,6,10,(注意:這里,),

∴由底數(shù)內(nèi)在規(guī)律可知:第五個(gè)等式左邊的底數(shù)為1,2,3,4,5,6,

右邊的底數(shù)為,又左邊為立方和,右邊為平方的形式,

故有,故選C.點(diǎn)睛:本題考查了,所謂歸納推理,就是從個(gè)別性知識(shí)推出一般性結(jié)論的推理.它與演繹推理的思維進(jìn)程不同.歸納推理的思維進(jìn)程是從個(gè)別到一般,而演繹推理的思維進(jìn)程不是從個(gè)別到一般,是一個(gè)必然地得出的思維進(jìn)程.解答此類的方法是從特殊的前幾個(gè)式子進(jìn)行分析找出規(guī)律.觀察前幾個(gè)式子的變化規(guī)律,發(fā)現(xiàn)每一個(gè)等式左邊為立方和,右邊為平方的形式,且左邊的底數(shù)在增加,右邊的底數(shù)也在增加.從中找規(guī)律性即可.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求出直線的方程,然后利用點(diǎn)到直線的距離公式可求出原點(diǎn)到直線的距離.【詳解】由于直線的一個(gè)方向向量為,則直線的斜率為,所以,直線的方程為,即,因此,原點(diǎn)到直線的距離為.故答案為:.【點(diǎn)睛】本題考查點(diǎn)到直線距離的計(jì)算,同時(shí)也考查了直線方向向量的應(yīng)用,解題時(shí)要根據(jù)題中條件得出直線的斜率,并寫出直線的方程,考查計(jì)算能力,屬于中等題.14、(1)(3)(4)【解析】

由題可得若則是在以,為焦點(diǎn),的橢圓上.故“型直線”必與橢圓相交,再判斷直線與橢圓是否相交即可.【詳解】由題可得若則是在以,為焦點(diǎn),的橢圓上.故“型直線”需與橢圓相交即可.易得.左右頂點(diǎn)為,上下頂點(diǎn)為對(duì)(1),過,滿足條件對(duì)(2),設(shè)橢圓上的點(diǎn),則到直線的距離,.若,則無解.故橢圓與直線不相交.故直線不滿足.對(duì)(3),與橢圓顯然相交,故滿足.對(duì)(4),因?yàn)檫^,故與橢圓相交.故滿足.故答案為:(1)(3)(4)【點(diǎn)睛】本題主要考查了橢圓的定義與新定義的問題,判斷直線與橢圓的位置關(guān)系可設(shè)橢圓上的點(diǎn)求點(diǎn)與直線的距離,分析是否可以等于0即可.屬于中等題型.15、【解析】

設(shè),可得,.,由余弦定理以及同角三角函數(shù)的關(guān)系得,則,利用配方法可得結(jié)果.【詳解】因?yàn)樵诰匦蝺?nèi)的射影落在線段上,所以平面垂直于平面,因?yàn)?,所以平面,,同理,設(shè),則,.在中,,,所以,所以四棱錐的體積.因?yàn)?,所以?dāng),即時(shí),體積取得最大值,最大值為,故答案為.【點(diǎn)睛】本題主要考查面面垂直的性質(zhì),余弦定理的應(yīng)用以及錐體的體積公式,考查了配方法求最值,屬于難題.解決立體幾何中的最值問題一般有兩種方法:一是幾何意義,特別是用空間點(diǎn)線面關(guān)系和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將立體幾何中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法求解.16、【解析】由題意可得:在區(qū)間上有解,即:在區(qū)間上有解,整理可得:在區(qū)間上有解,令,則,導(dǎo)函數(shù)在區(qū)間上單調(diào)遞增,,則,,即的最小值是.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)或.【解析】

(Ⅰ)由題意得到關(guān)于a,b,c的方程,解方程可得橢圓方程;(Ⅱ)聯(lián)立直線方程與橢圓方程確定點(diǎn)P的坐標(biāo),從而可得OP的斜率,然后利用斜率公式可得MN的斜率表達(dá)式,最后利用直線垂直的充分必要條件得到關(guān)于斜率的方程,解方程可得直線的斜率.【詳解】(Ⅰ)設(shè)橢圓的半焦距為,依題意,,又,可得,b=2,c=1.所以,橢圓方程為.(Ⅱ)由題意,設(shè).設(shè)直線的斜率為,又,則直線的方程為,與橢圓方程聯(lián)立,整理得,可得,代入得,進(jìn)而直線的斜率,在中,令,得.由題意得,所以直線的斜率為.由,得,化簡(jiǎn)得,從而.所以,直線的斜率為或.【點(diǎn)睛】本題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)?直線方程等基礎(chǔ)知識(shí).考查用代數(shù)方法研究圓錐曲線的性質(zhì).考查運(yùn)算求解能力,以及用方程思想解決問題的能力.18、(1);(2)或【解析】

(1)根據(jù)題意得到,分,,三種情況討論,即可得出結(jié)果;(2)先由關(guān)于的不等式恒成立,得到恒成立,結(jié)合絕對(duì)值不等式的性質(zhì),即可求出結(jié)果.【詳解】(1)當(dāng)時(shí),即為,當(dāng)時(shí),,解得;當(dāng)時(shí),,可得;當(dāng)時(shí),,解得,綜上,原不等式的解集為;(2)關(guān)于的不等式恒成立,即為恒成立,由,可得,解得:或.【點(diǎn)睛】本題主要考查含絕對(duì)值不等式,通常需要用到分類討論的思想,靈活運(yùn)用分類討論的思想處理,熟記絕對(duì)值不等式的性質(zhì)即可,屬于??碱}型.19、;.【解析】

化簡(jiǎn)得到,再利用夾角公式得到答案.,根據(jù)向量關(guān)系化簡(jiǎn)得到,再平方得到得到答案.【詳解】,.又,,,..又,.,,,,.【點(diǎn)睛】本題考查了向量的計(jì)算,將表示出來是解題的關(guān)鍵,意在考查學(xué)生對(duì)于向量公式的靈活運(yùn)用和計(jì)算能力.20、(1);(2)見解析【解析】

由橢圓C:的離心率為,且過點(diǎn),列方程給,求出,,由此能求出橢圓的標(biāo)準(zhǔn)方程;假設(shè)存在滿足條件的點(diǎn),設(shè)直線l的方程為,由,得,由此利用韋達(dá)定理、直線的斜率,結(jié)合已知條件能求出在x軸上存在點(diǎn),使得直線QM與直線QN的斜率的和為定值1.【詳解】橢圓C:的離心率為,且過點(diǎn).,解得,,橢圓的標(biāo)準(zhǔn)方程為.假設(shè)存在滿足條件的點(diǎn),當(dāng)直線l與x軸垂直時(shí),它與橢圓只有一個(gè)交點(diǎn),不滿足題意,直線l的斜率k存在,設(shè)直線l的方程為,由,得,設(shè),,則,,,要使對(duì)任意實(shí)數(shù)k,為定值,則只有,此時(shí),,在x軸上存在點(diǎn),使得直線QM與直線QN的斜率的和為定值1.【點(diǎn)睛】本題考查橢圓方程的求法,考查滿足兩直線的斜率和為定值的點(diǎn)是否存在的判斷與求法,考查橢圓、直線方程、斜率、韋達(dá)定理等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是中檔題.本題主要考查直線與圓錐曲線位置關(guān)系,所使用方法為韋達(dá)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論