版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
橢圓的簡單幾何性質YZK19018橢圓的簡單幾何性質教學目標:知識與技能:掌握橢圓的簡單幾何性質,求橢圓性質的一般方法與步驟。運用數(shù)形結合、函數(shù)與方程、轉化的思想。過程與方法:以自主探究,合作討論為主,通過橢圓幾何性質的學習,培養(yǎng)分析、抽象、概括等思維能力;加強數(shù)形結合、化歸轉化等思想的培養(yǎng)。情感、態(tài)度與價值觀:培養(yǎng)合作、交流、獨立思考等良好的個性品質。教學重點:掌握橢圓的簡單幾何性質及應用。教學難點:橢圓幾何性質的形成過程,會用橢圓幾何性質解決問題。教學目標:一、復習案·提問回顧1、橢圓的定義:
到兩定點F1、F2的距離和為常數(shù)(大于|F1F2|)的點的軌跡叫做橢圓。2、橢圓的標準方程:3、橢圓中a,b,c的關系:a2=b2+c2一、復習案·提問回顧1、橢圓的定義:到兩定點F1、二、預習案·自主學習橢圓的簡單幾何性質oyB2B1A1A2F1F2cab1、范圍:從而知
-a≤x≤a,-b≤y≤b
橢圓落在x=±a,y=±b組成的矩形中二、預習案·自主學習橢圓YXOP(x,y)P1(-x,y)P2(-x,-y)2、對稱性把x換成-x,方程不變,說明橢圓關于__軸對稱;把y換成-y,方程不變,說明橢圓關于__軸對稱;所以橢圓關于__點對稱;故,__是橢圓的對稱軸,__是橢圓的對稱中心。YXOP(x,y)P1(-x,y)P2(-x,-y)2、對稱5令x=0,得y=?說明橢圓與y軸的交點?令
y=0,得x=?說明橢圓與x軸的交點?*頂點:橢圓與它的對稱軸的四個交點,叫做橢圓的頂點。*長軸、短軸:線段A1A2、B1B2分別叫做橢圓的長軸和短軸。a、b分別叫做橢圓的長半軸長和短半軸長。oyB2B1A1A2F1F2cab(0,b)(a,0)(0,-b)(-a,0)3、頂點令x=0,得y=?說明橢圓與y軸的交點?*頂點:橢圓與6123-1-2-3-44y123-1-2-3-44y12345-1-5-2-3-4x12345-1-5-2-3-4x根據(jù)前面所學有關知識畫出下列圖形(1)(2)A1
B1
A2
B2
B2
A2
B1
A1
123-1-2-3-44y123-1-2-3-44y123474、離心率離心率:橢圓的焦距與長軸長的比:[1]離心率的取值范圍:[2]離心率對橢圓形狀的影響:0<e<11、e越接近1,c就越接近a,從而b就越小,橢圓就越扁2、e越接近0,c就越接近0,從而b就越大,橢圓就越圓3、特例:e=0,則a=b,則
c=0,兩個焦點重合,橢圓變?yōu)閳A[3]e與a,b的關系:4、離心率離心率:橢圓的焦距與長軸長的比:[1]離心率的取值8知識升華[1]橢圓標準方程所表示的橢圓的存在范圍是什么?[2]上述方程表示的橢圓有幾個對稱軸?幾個對稱中心?[3]橢圓有幾個頂點?頂點是誰與誰的交點?[4]對稱軸與長軸、短軸是什么關系?[5]2a
和2b是什么量?a和b是什么量?[6]關于離心率講了幾點?知識升華[1]橢圓標準方程所表示的橢圓的存在范圍是什么?[2標準方程圖象范圍對稱性頂點坐標焦點坐標半軸長焦距a,b,c關系離心率|x|≤a,|y|≤b|x|≤b,|y|≤a關于x軸、y軸成軸對稱;關于原點成中心對稱。(a,0),(0,b)(b,0),(0,a)(c,0)(0,c)長半軸長為a,短半軸長為b.焦距為2ca2=b2+c2標準方程圖象范圍對稱10三、探究案·講練互動三、探究案·講練互動它的長軸長是:
。短軸長是:
。焦距是:
。離心率等于:
。焦點坐標是:
。頂點坐標是:
。
外切矩形的面積等于:
。
108680它的長軸長是:。短軸長是:《橢圓的簡單幾何性質》優(yōu)質課教學課件已知橢圓方程為6x2+y2=6它的長軸長是:
。短軸長是:
。焦距是:
。離心率等于:
。焦點坐標是:
頂點坐標是:
。
外切矩形的面積等于:
。
2檢測1.已知橢圓方程為6x2+y2=6它的長軸長是:14探究點二利用幾何性質求橢圓的標準方程求適合下列條件的橢圓的標準方程:(1)經(jīng)過點、.(2)長軸長等于,離心率等于.探究點二利用幾何性質求橢圓的標準方程解:(1)由題意,,又∵長軸在軸上,所以,橢圓的標準方程為(2)由已知,,∴,,∴,所以橢圓的標準方程為或.解:(1)由題意,,又∵長軸在(2)由已知《橢圓的簡單幾何性質》優(yōu)質課教學課件《橢圓的簡單幾何性質》優(yōu)質課教學課件《橢圓的簡單幾何性質》優(yōu)質課教學課件《橢圓的簡單幾何性質》優(yōu)質課教學課件《橢圓的簡單幾何性質》優(yōu)質課教學課件《橢圓的簡單幾何性質》優(yōu)質課教學課件五、總結案·素能提升:
本節(jié)課我們學習了橢圓的幾個簡單幾何性質:范圍、對稱性、頂點坐標、離心率等概念及其幾何意義。了解了橢圓的幾個基本量a,b,c,e及頂點、焦點、對稱中心及其相互之間的關系,這對我們解決橢圓中的相關問題提供了很大的幫助,給我們以后學習圓錐曲線其它的兩種曲線打下了扎實的基礎。在解析幾何的學習中,我們更多的是從方程的形式這個角度來挖掘題目中的隱含條件,需要我們認識并熟練掌握數(shù)與形的聯(lián)系。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版高級行政人員退休待遇及離職協(xié)議3篇
- 2024年示范文本:zfcxjs.tj.gov.cnsylmRSS軟件許可協(xié)議3篇
- 2024年福建省標準二手房交易協(xié)議范本版B版
- 2025版車位買賣與車位物業(yè)管理合同示范文本3篇
- 2024年碗扣支架租賃與施工技術指導協(xié)議3篇
- 2024年財產(chǎn)分割與子女撫養(yǎng)權契約3篇
- 2024年雨水收集與利用項目合同
- 2025版簡單協(xié)議書范文:二零二五年度醫(yī)療設備采購與安裝合同
- 2024年銷售人員薪資福利與離職補償合同3篇
- 簡歷制作課程設計
- 6.2《青紗帳-甘蔗林》【中職專用】(高教版2023基礎模塊下冊)
- (康德卷)重慶市2024屆高三一診英語試卷(含答案)
- 農(nóng)村排水渠道疏浚與治理
- 2023年房車設計工程師年度總結及下一年計劃
- 南非的地理特點
- 2023年硬件研發(fā)工程師年度總結及下年工作展望
- 北京版二年級語文上冊期末綜合測試卷含答案
- 中國聯(lián)通黑龍江分公司提升客戶滿意度的策略研究
- JGJ406T-2017預應力混凝土管樁技術標準附條文
- 蘇教版科學四年級上全冊單元達標測試卷(一)附答案
- Unit1CulturalHeritage詞匯講解課件高中英語課堂精美課件(人教版2019)
評論
0/150
提交評論