




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
高中階段學(xué)習(xí)難度、強度、容量加大,學(xué)習(xí)負擔及壓力明顯加重,不能再依賴初中時期老師“填鴨式〃的授課,“看管式〃的自習(xí),“命令式〃的作業(yè),要逐步培養(yǎng)自己主動獲取知識、鞏固知識的能力,制定學(xué)習(xí)計劃,養(yǎng)成自主學(xué)習(xí)的好習(xí)慣。下面就是給大家?guī)淼娜私贪娓咭粩?shù)學(xué)知識點總結(jié),希望能幫助到大家!人教版高一數(shù)學(xué)知識點總結(jié)11過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯角相等,兩直線平行11同旁內(nèi)角互補,兩直線平行12兩直線平行,同位角相等13兩直線平行,內(nèi)錯角相等14兩直線平行,同旁內(nèi)角互補15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊17三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°18推論1直角三角形的兩個銳角互余19推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和20推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角21全等三角形的對應(yīng)邊、對應(yīng)角相等22邊角邊公理(sas)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等23角邊角公理(asa)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等24推論(aas)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等25邊邊邊公理(sss)有三邊對應(yīng)相等的兩個三角形全等26斜邊、直角邊公理(hl)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等27定理1在角的平分線上的點到這個角的兩邊的距離相等28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29角的平分線是到角的兩邊距離相等的所有點的集合30等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)人教版高一數(shù)學(xué)知識點總結(jié)21?函數(shù)的零點⑴定義:對于函數(shù)y二f(x)(xWD),把使f(x)=O成立的實數(shù)x叫做函數(shù)y二f(x)(xWD)的零點.函數(shù)的零點與相應(yīng)方程的根、函數(shù)的圖象與x軸交點間的關(guān)系:方程f(x)=0有實數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點?函數(shù)y=f(x)有零點.函數(shù)零點的判定(零點存在性定理):如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)?f(b)O,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在ce(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根.二次函數(shù)y二ax2+bx+c(aO)的圖象與零點的關(guān)系二分法對于在區(qū)間[a,b]上連續(xù)不斷且f(a)?f(b)O的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫做二分法.4?函數(shù)的零點不是點:函數(shù)y=f(x)的零點就是方程f(x)=0的實數(shù)根,也就是函數(shù)y=f(x)的圖象與x軸交點的橫坐標,所以函數(shù)的零點是一個數(shù),而不是一個點?在寫函數(shù)零點時,所寫的一定是一個數(shù)字,而不是一個坐標.5?對函數(shù)零點存在的判斷中,必須強調(diào):(1)f(x)在[a,b]上連續(xù);(2)f(a)?f(b)0;(3)在(a,b)內(nèi)存在零點.這是零點存在的一個充分條件,但不必要.6?對于定義域內(nèi)連續(xù)不斷的函數(shù),其相鄰兩個零點之間的所有函數(shù)值保持同號.人教版高一數(shù)學(xué)知識點總結(jié)3集合的有關(guān)概念1)集合(集):某些指定的對象集在一起就成為一個集合(集)?其中每一個對象叫元素注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則azb)和無序性({a,b}與{b,a}表示同一個集合)。集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件2)集合的表示方法:常用的有列舉法、描述法和圖文法3)集合的分類:有限集,無限集,空集。4)常用數(shù)集:N,Z,Q,R,N_集、交集、并集、補集、空集、全集等概念1)子集:若對xEA都有xEB,則AB(或AB);2)真子集:AB且存在xOEB但xOA;記為AB(或,且)3)交集:AnB={x|xEA且xEB}4)并集:AUB二{x|xEA或xEB}5)補集:CUA={x|xA但xEU}注意:A,若Ah?,貝IJ?A;若且,則a=B(等集)集合與元素掌握有關(guān)的術(shù)語和符號,特別要注意以下的符號:(1)與、?的區(qū)別;(2)與的區(qū)別;(3)與的區(qū)別。子集的幾個等價關(guān)系①AGB二AAB②AUB二BAB③ABCuACuB;AGCuB二空集CuAB;⑤CuAUB=IAB。交、并集運算的性質(zhì)①AGA二A,AG?二?,AnB=BnA②AUA=A,AU?=A,AUB=BUA;③Cu(AUB)二CuAGCuB,Cu(AcB)二CuAUCuB;有限子集的個數(shù):設(shè)集合A的元素個數(shù)是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。練習(xí)題:已知集合M={x|x=m+,mGZ},N={x|x=,nGZ},P={x|x=,pGZ},則M,N,P滿足關(guān)系()A)M二NPB)MN二PC)MNPD)NPM分析一:從判斷元素的共性與區(qū)別入手。解答一:對于集合M:{x|x=,mGZ};對于集合N:{x|x=,nGZ}對于集合P:{x|x=,pGZ},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以MN二P,故選Bo人教版高一數(shù)學(xué)知識點總結(jié)4?函數(shù)的單調(diào)性(局部性質(zhì))⑴增函數(shù)設(shè)函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當x1如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當x1f(x2),那么就說f(x)在這個區(qū)間上是減函數(shù)?區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);圖象的特點如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.?函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法(A)定義法:O1任取x1,x2^D,且x102作差f(x1)-f(x2);03變形(通常是因式分解和配方);04定號(即判斷差f(x1)-f(x2)的正負);05下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).圖象法(從圖象上看升降)復(fù)合函數(shù)的單調(diào)性復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減〃注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.人教版高一數(shù)學(xué)知識點總結(jié)5【幕函數(shù)】定義:形如y=xAa(a為常數(shù))的函數(shù),即以底數(shù)為自變量幕為因變量,指數(shù)為常量的函數(shù)稱為幕函數(shù)。定義域和值域:當a為不同的數(shù)值時,幕函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當x為不同的數(shù)值時,幕函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進入函數(shù)的值域性質(zhì):對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:首先我們知道如果a二p/q,q和p都是整數(shù),則xA(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+呵。當指數(shù)n是負整數(shù)時,設(shè)a=-k,則x=1/(xAk),顯然XH0,函數(shù)的定義域是(-8,0)U(0,+R).因此可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學(xué)年高中語文第一單元第1課林教頭風(fēng)雪山神廟學(xué)案新人教版必修5
- 2024-2025學(xué)年高中生物第4章第2節(jié)生物膜的流動鑲嵌模型演練強化提升含解析新人教版必修1
- 2024-2025學(xué)年高中歷史第2單元近代中國的反侵略反封建斗爭和民主革命第5課鴉片戰(zhàn)爭和太平天國運動學(xué)案北師大版必修1
- 2024-2025學(xué)年高中語文8蘭亭集序習(xí)題含解析新人教版必修2
- 2024-2025學(xué)年高中英語Module1SmallTalkSectionⅢ知能演練輕松闖關(guān)含解析外研版選修6
- 2024-2025學(xué)年高中歷史專題7近代西方民主政治的確立與發(fā)展2美國1787年憲法學(xué)案人民版必修1
- 2024-2025學(xué)年高中歷史第三單元從人文精神之源到科學(xué)理性時代第15課近代科學(xué)技術(shù)革命課時作業(yè)含解析岳麓版必修3
- 2024-2025學(xué)年高中政治第四單元發(fā)展社會主義市抄濟課題能力提升九含解析新人教版必修1
- 湖南省2024年普通高中學(xué)業(yè)水平選擇性考試物理試題含答案
- 2025年連鑄設(shè)備項目可行性研究報告
- 新版第三類醫(yī)療器械分類目錄
- 2024全新血液透析培訓(xùn)
- 護校隊工作職責及管理制度
- 2024年湖南省公務(wù)員考試《行測》真題及答案解析
- GB/T 623-2024化學(xué)試劑高氯酸
- DB22T 5167-2024 市政橋梁結(jié)構(gòu)監(jiān)測系統(tǒng)運行維護與管理標準
- JJF 1375-2024機動車發(fā)動機轉(zhuǎn)速測量儀校準規(guī)范
- 《分類加法與分步乘法計數(shù)原理-習(xí)題課》名師課件
- 常見業(yè)務(wù)場景網(wǎng)絡(luò)安全建設(shè)VISIO圖合集(27個類型)v2023
- 無人機通信融合組網(wǎng)
- 七年級英語閱讀理解55篇(含答案)
評論
0/150
提交評論