spss數(shù)據(jù)分析的概論 試題 答案 結(jié)果_第1頁
spss數(shù)據(jù)分析的概論 試題 答案 結(jié)果_第2頁
spss數(shù)據(jù)分析的概論 試題 答案 結(jié)果_第3頁
spss數(shù)據(jù)分析的概論 試題 答案 結(jié)果_第4頁
spss數(shù)據(jù)分析的概論 試題 答案 結(jié)果_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

《SPSS原理與運用》練習(xí)題數(shù)據(jù)對應(yīng)關(guān)系:06-均值檢驗;07-方差分析;08-相關(guān)分析;09-回歸分析;10-非參數(shù)檢驗;17-作圖1、以data06-03為例,分析身高大于等于155cm的與身高小于155cm的兩組男生的體重和肺活量均值是否有顯著性。分析:一個因素有2個水平用獨立樣本t檢驗,此題即身高因素有155以上和以下2個水平,因此用獨立樣本t檢驗(analyze->comparemeans->independent-samplesTtest)。報告:一、體重①m+s:>=155cm時,m=40.838kg;s=5.117;<155cm時,m=34.133kg;s=3.816;方差齊性檢驗結(jié)果:P=0.198>0.05,說明方差齊性。t=4.056;p=0.001<0.01,說明身高大于等于155cm的與身高小于155cm的兩組男生的體重有極顯著性差異。二、肺活量①m+s:>=155cm時,m=2.404;s=0.402;<155cm時,m=2.016;s=0.423;方差齊性檢驗結(jié)果:P=0.961>0.05,說明方差齊性。t=2.512;p=0.018<0.05,說明說明身高大于等于155cm的與身高小于155cm的兩組男生的體重有顯著性差異。2、以data06-04為例,判斷體育療法對降低血壓是否有效。分析:比較前后2種情況有無顯著差異,用配對樣本t檢驗,(analyze->comparemeans->paired-samplesTtest).報告:①m+s治療前舒展壓:m=119.50;s=10.069;治療后舒展壓:m=102.50;s=11.118;相關(guān)系數(shù)correlation=0.599;p=0.067>0.05,說明體育療法與降低血壓相關(guān)。t=5.639;p=0.001v0.05,說明體育療法對降低血壓有效。3、以data07-01為例,比較四種飼料對豬體重增加的作用有無不同。分析:一個因素多個水平用單因素方差分析。(analyze->comparemeans->One-wayANOVA)。操作中,contrast不用改;post-hoc中需勾Bonferroni和S-N-K;Options中需勾第1個descriptive和第3個Homegeneityofvariancetest.報告:①m+s:A:m=133.36;s=6.808;B:m=152.04;s=6.957;C:m=189.72;s=6.350;D:m=220.78;s=6.106;方差齊性檢驗結(jié)果:F=0.024;P=0.995>0.05,說明方差齊性。F=157.467;p=0.001<0.05,說明ABCD四種飼料對豬體重增加的作用有顯著性差異。POST-HOC檢驗表明:ABCD四種飼料對豬體重增加的作用效果從高到低依次為:D>C>B>A.(如何看圖及如何排序,方法:如表格中顯示D-A=87.415;D-B=68.735;D-C=31.055,假設(shè)D=100,則易可計算出ABC的假設(shè)值,再根據(jù)假設(shè)值對ABCD進行排序即可)4、以data07-10為例,分析四種藥物對某生化指標有無顯著性作用。分析:對一個樣本重復(fù)測量時,作重復(fù)測量方差分析(。analyze->generallinearmodel->repeatedmeasure)操作:一、定義:factorname中填med;numberoflevels中填4;->add->define:將四個指標一起添加到第一個框中去一》options中3個必要操作:1將med選到右邊框中去,2勾選下邊的comparemaineffect,在confidentintervaladjustment復(fù)選框中選Bonferroni;3desplay框中選第1個Des…和第2個Esti..。->0K報告:看結(jié)果時看第一個表descriptvestatics和第5個表testofwithin-subjectseffects表中的greenhouse-geisser結(jié)果F和Sig(即稍后要報告的p)即可m+s:服藥1后生化指標:m=26.40;s=8.764;服藥2后生化指標:m=15.60;s=6.542;服藥3后生化指標:m=15.60;s=3.847;服藥4后生化指標:m=32.00;s=8.000.F=24.759,p=0.001v0.01,說明差異顯著,四種藥物對某生化指標有顯著性作用。且其中藥物4所起的作用最大,藥物3所起的作用最大?。〒?jù)平均值可看出來)。5、以data08-01為例,分析國民收入與城鄉(xiāng)居民儲蓄存款余額之間的關(guān)系。分析:變量間不準確不穩(wěn)定的變化關(guān)系稱之為相關(guān)關(guān)系。相關(guān)分析種類很多,spss中有二列相關(guān)(Bivariate)、偏相關(guān)(partial)、距離分析(distances%類。其中的二列相關(guān)分析(Bivariate)有3種:(l)Pearson皮爾遜相關(guān)系數(shù),即積差相關(guān):就是2個變量標準分數(shù)乘積的算術(shù)平均數(shù),它用于兩個變量都是連續(xù)型變量時;⑵Kendall'stau-b:即肯德爾和諧系數(shù),用于2(/3個以上)變量都是離散型變量時,可檢驗多個被試是否具有一致性。它分單維和雙維。⑶Speaman斯皮爾曼等級相關(guān):用于兩變量中有1個是離散型變量時。操作:Analyze一>Correlate一>Bivariate(此題符合Pearson相關(guān))1)Variables:選入這兩個變量2)Options:勾選Meansandstandarddeviations即可。報告:①m+s國民收入m=128.5452,其S=106.18753;城鄉(xiāng)居民儲蓄存款m=14.1216,s=23.79747。②相關(guān)系數(shù)r=0.976**,相關(guān)極顯著,且成正相關(guān)。以data08-03為例,判斷樹木的月生長量與月平均氣溫、月降雨量、月平均日照時數(shù)、月平均濕度這4個氣候因素的關(guān)系。分析:此題用偏相關(guān)partial,偏相關(guān)用于分析事物間是否存在潛在的關(guān)系。但作偏相關(guān)都首先需作一般相關(guān)。操作:第一步:二列相關(guān)Analyze一>Correlate一>Bivariate(Pearson相關(guān))1)variables:選入所有變量2)option:Meansandstandarddeviations前打鉤。報告:①5個變量的平均數(shù)和標準差:m+s(見截圖)②樹木的月生長量與四個因子相關(guān)系數(shù)分別為:(看有無*,看*有多少)相關(guān)系數(shù)r=0.983**,相關(guān)極顯著,成正相關(guān)。相關(guān)系數(shù)r=0.709**,相關(guān)極顯著,成正相關(guān)。相關(guān)系數(shù)r=0.704*,相關(guān)顯著,成正相關(guān)。相關(guān)系數(shù)r=0.374,無顯著相關(guān)。第二步:偏相關(guān)Analyze一>Correlate一>Paritable(Pearson相關(guān))1)Variables:樹木的月生長量與月平均氣溫;.000.0002)Controllingfor:月降雨量、月平均日照時數(shù)、月平均濕度做其它兩者之間的關(guān)系,操作類似,只是有點麻煩。報告:r=0.977,其他因素對樹木的月生長量與月平均氣溫之間的關(guān)系有影響;r=-0.491,…有影響;r=0.632,…有影響。(因為樹木的月生長量與月平均濕度之間無顯著相關(guān),就沒必要再做偏相關(guān))以data02-01為例,建立一個以初始工資、工作經(jīng)驗、受教育年數(shù)為自變量,當前工資為因變量的回歸方程。分析:回歸表示一個變量隨另一個變量作不同程度變化的單向關(guān)系。根據(jù)自變量的多少克可分為一元回歸分析與多元回歸分析。過程:先做散點圖,判斷是用線性回歸還是曲線回歸(一般用線性回歸)操作:一、打開data,選擇REGRESSIONlinearregression,選擇因變量、自變量。二、在method中選擇stepwise三、在statistics中增加選項Rsquaredchange,descriptive報告:①目前工資的平均值是…,標準差是…初始工資的平均值是...,標準差是..工作經(jīng)驗的平均值是...,標準差是...教育年數(shù)的平均值是...,標準差是...DescriptiveStatisticsDescriptiveStatisticsMeanStd.DeviationNTOC\o"1-5"\h\zCurrentSalary34419.5717075.661474BeginningSalary17016.097870.638474EducationalLevel(years)13.492.885474MonthssinceHire81.1110.061474②.解釋力度為0.80,解釋力度很大.ModelSummaryModelRRSquareAdjustedRSquareStd.ErroroftheEstimateChangeStatisticsRSquareChangeFChangedf1df2Sig.FChangeTOC\o"1-5"\h\z.880(a).775.7748115.356.7751622.1181472.000.890(b).792.7927796.524.01840.3931471.000.895(c).801.8007645.998.00819.7281470.000Coefficients(a)1BeginningSalary1.9091BeginningSalary1.909(Constant)-7808.714BeginningSalary1.673EducationalLevel(years)(Constant)-19986.502(Constant)1928.206888.6802.170.031.047.88040.276.0001753.860-4.452.000.059.77128.423.0001020.390160.550.1726.3563236.616-6.175.000BeginningSalary1.689.058.77929.209.000EducationalLevel(years)966.107157.924.1636.118.000MonthssinceHire155.70135.055.0924.442.000aDependentVariable:CurrentSalary③回歸方程:YA=一19986.5+1.689*beginingsalary+966.107*educationallevel+155.701*monthssinceHire擲一顆六面題300次,見data10-01a,問這顆六面體是否均勻?分析:X2卡方是檢驗實際頻數(shù)與理論頻數(shù)之間差異的統(tǒng)計量。6面體如果均勻的話,6個面出現(xiàn)的頻數(shù)應(yīng)該是無顯著差異。操作:Analyse一NonparametricTests一Chi一square(卡方檢驗)將Imt加入到TestVariableList里Options勾選Descriptive報告:由結(jié)果可知X2=8.960P=0.111>0.05,說明無顯著性差異,所以,這顆六面體均勻。某研究者就目前就業(yè)情況作調(diào)查,在68名男性大學(xué)生中,39人認為“很好”,29人認為“不好”,在57名女性大學(xué)生中,42人認為“不好”,15人認為“很好”,試問大學(xué)生的態(tài)度是否與其性別有關(guān)?分析:原理同上題,理論值和實測值如果有顯著性差異,則與其有關(guān),若無顯著性差異,則無關(guān)。操作:創(chuàng)建表:定義變量gender,attitude,num,輸入數(shù)據(jù)Dataweightcasenum選擇descriptivestatisticscrosstabsROWgender,COLUMNattidtudeSTATISTICS中選擇chi_squareCELLDISPLAY中增加選項COUNTS:EXPECTED報告:①?男性認為很好的實測值有39人,期望值為29.4人;男性認為不好的實測值有29人,期望值是38.6人;女性認為很好的實測值有15人,期望值為24.6人;女性認為不好的實測值有42人,期望值是32.6人。②卡方檢驗結(jié)果:x2=12.173,P=0.001v0.01,表明學(xué)生態(tài)度受性別影響。(看第一行PearsonChi-square那一行中的值)有甲、乙兩種藥物,獨立觀察20名患者,其中10人各服甲、乙藥物,試比較兩種藥物的療效是否不同,數(shù)據(jù)見data10-06。分析:本題采用非參數(shù)檢驗。假設(shè)檢驗的方法有參數(shù)檢驗和非參數(shù)檢驗2種。參數(shù)檢驗是根據(jù)樣本信息對相應(yīng)的總體參數(shù)的假設(shè)檢驗。它對數(shù)據(jù)要求高,如總體呈正態(tài)或近正態(tài)分布。但實際研究中出現(xiàn)總體狀態(tài)不明,或總體狀態(tài)呈非正態(tài)分布時,此時可采用非參數(shù)檢驗。操作1)analyse一NonparametricTest—2Independentsamplestest;2)將ycss加入testvariablelist框中,將zb加入grooupingvariable中,在definegroup中定義分組;(在group中分別輸入1、2)3testtype中四個選項全選,option中選擇descriptive報告:①m+s:ycss:m=1.625;s=1.9655;Zb:m=1.50;s=0.513;②四種檢驗的P值如下:Mann-WhitneyTest檢驗:P1=0.036<0.05表明差異顯著.P2=0.035<0.05表明差異顯著。2)Moses-Test檢驗有2個P值,Pl=0.291>0.05表明差異不顯著;P2=0.686>0.05,表明差異不顯著。3)Two-SampleKolmogorov-SmirnovTest檢驗:P=0.164>0.05,表明差異不顯著。4)Wald-WolfowitzTest檢驗:P(min)=0.019v0.05表明差異顯著。P(max)=0.414>0.05表明差異不顯著。綜合以上各種檢驗的P值來看,這兩種藥物之間的療效差異不顯著。11、以data17-01數(shù)據(jù)文件生成1985-1994年某個城市12個月份平均氣溫的簡單條形圖。第11題:以data17-01數(shù)據(jù)文件生成1985-1994年某個城市12個月份平均氣溫的簡單條形圖。操作:1.題目分析:因為只有一個城市,所以用簡單的畫圖Graphs-bar(選第一個sample)圓坨坨選最后一個otherstatistic把北京選入第一個框框variable將月份選入第二個框框categoryaxis結(jié)果:這是以北京市的情況為例的。12、以data17-07數(shù)據(jù)文件為例,分別生成1993年俄羅斯每季度失業(yè)人口情況和部分獨聯(lián)體國家失業(yè)人口情況的圓圖。步驟:題目分析:本題有兩問1993年俄羅斯每季度失業(yè)人口情況,因為只有一個國家,所以用簡單的畫圖Graphs-pie(選第一個sample)圓坨坨選最后一個otherstatistic把俄羅斯選入第一個框框variable將季節(jié)選入第二個框框defineslices這是第一問,俄羅斯的情況1.部分獨聯(lián)體國家失業(yè)人口情況的圓圖,因為只有一個國家,所以用第二個畫圖2.Graphs-pie(選第二個separate)3.把部分獨聯(lián)體國家選入第一個大框框slicesrepresentUnit1SPSSforWindows軟件有幾種運行方式?什么是混合運行方式,它有什么特點?SPSSforWindows有幾種類型的窗口,每個窗口主要功能是什么?答:3種,數(shù)據(jù)窗口(處理數(shù)據(jù));結(jié)果窗口(顯示結(jié)果);語句窗口(用來編程)什么是輸出窗(或語句窗)的主窗,什么是主窗的標志?怎樣把非主窗變成主窗?分出主窗和非主窗的作用是什么?以輸出窗為例說明之。通過什么菜單項設(shè)置系統(tǒng)參數(shù)?Edit中的OptionsSPSS的統(tǒng)計分析功能分布在何處?Analyze從何處可以獲得幫助信息?系統(tǒng)提供的幫助有幾種形式?7種:Topics;Tutorial;StatisticsCoach;對話框中的右鍵幫助;選擇項的右鍵幫助;輸出項的右鍵幫助;統(tǒng)計量解釋的右鍵幫助Unit41.均值比較的T檢驗分幾種類型?各自檢驗的假設(shè)是什么?單一樣本t檢驗,檢驗單個變量的均值是否與給定的常數(shù)之間存在差異。即樣本均值與總體均值相等的假設(shè)。兩個獨立樣本的t檢驗用于檢驗兩個不相關(guān)的樣本來自具有相同均值的總體。配對樣本t檢驗(PairedSampleTtest)用于檢驗兩個相關(guān)的樣本是否來自具有相同均值的總體。要使用T檢驗進行均值比較的變量,應(yīng)該具有怎樣的分布特征?變量應(yīng)該是正態(tài)分布的。如果分析變量明顯是非正態(tài)分布的,應(yīng)該選擇非參數(shù)檢驗過程。3?獨立樣本T檢驗對變量的齊性有什么要求?被檢驗的兩個樣本方差要求具有齊性,如果不齊,使用校正公式計算T值和自由度。因此,在輸出結(jié)果中,應(yīng)該先檢查方差齊性,根據(jù)齊性的結(jié)果,在輸出表格中選擇T檢驗的結(jié)果。Unit5簡述方差分析的基本思想。用簡單的表達式表示單因素方差分析的偏差平方和分解。通過分析研究中不同來源的變異對總變異的貢獻大小,從而確定可控因素對研究結(jié)果影響力的大小。方差分析的假定的前提條件有哪些?(1)各處理條件下的樣本是隨機的。(2)樣本是相互獨立的,否則可能出現(xiàn)無法解析的輸出結(jié)果。(3樣本分別來自正態(tài)分布總體,否則使用非參數(shù)分析。(4)方差齊性。什么是主效應(yīng)?什么是交互效應(yīng)?一個因素的水平之間的平均數(shù)差異,稱為該因素的主效應(yīng)。當研究設(shè)計被呈現(xiàn)為一個矩陣,并且第一個因素定義行,第二個因素定義列的時候,行與行之間的平均數(shù)差異描述就是第一個因素的主效應(yīng),列之間的平均數(shù)差異描述的是第二個因素的主效應(yīng)當被試處理情境之間或單元之間的平均數(shù)差異顯著不同于因素的全部主效應(yīng)時,雙因素之間的交互作用就發(fā)生了?;蛘呖梢赃@樣理解,當雙因素實驗研究的結(jié)果以圖形呈現(xiàn)的時候,如果存在不平行的折線,則說明存在交互作用簡述協(xié)方差分析的基本思想。統(tǒng)計復(fù)習(xí)題目一?某公司管理人員為了解某化妝品在一個城市的月銷售量Y(單位:箱)與該城市中適合使用該化妝品的人數(shù)X(單位:千人)以及他們?nèi)司率杖隭(單位:元)之間的關(guān)系,12在某個月中對15個城市做調(diào)查,得上述各量的觀測值如表A1所示?假設(shè)Y與X,X之間12滿足線性回歸關(guān)系y二B+Px+Px+£,i二1,2,,15i01i12i2i其中£獨立同分布于N(0,b2).i(1)求回歸系數(shù)P,P,P的最小二乘估計值和誤差方差b2的估計值,寫出回歸方程并對回012歸系數(shù)作解釋;analyze-regression-linear,ytodependent,x1x2toindepents‘statistics-confidenceintervals,save-unstandardized.Predictionindividual-individual.okCoefficientsaModelUnstandardizedCoefficientsStandardizedCoefficientstSig.95%ConfidenceIntervalforBBStd.ErrorBetaLowerBoundUpperBound1(Constant)3.4532.4311.420.181-1.8438.749x1.496.006.93481.924.000.483.509x2.009.001.1089.502.000.007a.DependentVariable:yANOVAbModelSumofSquaresdfMeanSquareFSig.1Regression53844.716226922.3585.679E3.000aResidual56.884124.740Total53901.60014Predictors:(Constant),x2,x1DependentVariable:y回歸系數(shù)p,p,p的最小二乘估計值和誤差方差b2的估計值分別為:3.453,0.496,0.009和012b2=4.740.回歸方程為y=0.496*x1+0.009*x2+3.453回歸系數(shù)解釋:3.453可理解為化妝品的月基本銷售量,當人均月收入X固定時,適合使2用該化妝品的人數(shù)X每提高一個單位,月銷售量Y將增加0.496個單位;當適合使用該化1妝品的人數(shù)X固定時,人均月收入X每提高一個單位,月銷售量Y將增加0.009個單位12(2)求出方差分析表,解釋對線性回歸關(guān)系顯著性檢驗的結(jié)果.求復(fù)相關(guān)系數(shù)的平方R2的值并解釋其意義;ANOVAbModelSumofSquaresdfMeanSquareFSig.1Regression53844.716226922.3585.679E3.000aResidual56.884124.740Total53901.60014Predictors:(Constant),x2,x1DependentVariable:yModelSummaryModelRRSquareAdjustedRSquareStd.ErroroftheEstimate1.999a.999.9992.17722a.Predictors:(Constant),x2,x1由于p值=0.000v0.05,所以回歸關(guān)系顯著.R2值=0.999,說明Y與X,X之間的線性回歸12關(guān)系是高度顯著的…分別求卩]和卩2的置信度為0.95的置信區(qū)間;coefficients的后面部分.卩和卩的置信度為0.95的置信區(qū)間分別為(0.483,0.509),12(0.007,0.011)對a二0.05,分別檢驗人數(shù)X及收入X對銷量Y的影響是否顯著;12由于系數(shù)卩,0對應(yīng)的檢驗P值分別為0.000,0.000都小于0.05,所以適合使用該化妝品12的人數(shù)X和人均月收入X對月銷售量Y的影響是顯著的12該公司欲在一個適宜使用該化妝品的人數(shù)兀小=220,人均月收入x02=2500的新城市中銷售該化妝品,求其銷量的預(yù)測值及置信為0.95的置信區(qū)間.Y的預(yù)測值及置信度為0.95的置信區(qū)間分別為:135.5741和(130.59977,140.54305)在數(shù)據(jù)表中直接可以看見、某班42名男女學(xué)生全部參加大學(xué)英語四級水平考試,數(shù)據(jù)如下:(數(shù)據(jù)表為A2)不合格1合格2男生1262女生286問男女生在英語學(xué)習(xí)水平上有無顯著差異?單擊weightcases-weightcasesby_x,ok,analyze-descriptivestatistics-crosstabs,(列聯(lián)表分析)sextorows,scoretocolumn,exact-exact,statisticschi-square,ok.Chi-SquareTestsValuedfAsymp.Sig.(2-sided)ExactSig.(2-sided)ExactSig.(1-sided)PointProbabilityPearsonChi-Square7.721a1.005.010.010ContinuityCorrectionB5.5781.018LikelihoodRatio7.3691.007.037.010Fisher'sExactTest.010.010Linear-by-LinearAssociation7.537c1.006.010.010.010NofValidCases421cells(25.0%)haveexpectedcountlessthan5.Theminimumexpectedcountis2.67.Computedonlyfora2x2tableThestandardizedstatisticis2.745.原假設(shè)不顯著,看這個(Asymp.Sig.(2-sided))。PearsonChi-Square(卡方檢驗)andLikelihoodRatio(似然比)all<0.05男女生在英語學(xué)習(xí)水平上差異是顯著的三、將一塊耕地等分為24個小區(qū),今有3種不同的小麥品種(d)和2種不同的肥料(B1,B2),現(xiàn)將各小麥品種與各種肥料進行搭配,對每種搭配都在4個小區(qū)上試驗,測得每個小區(qū)產(chǎn)量的數(shù)據(jù)如表A3所示.(1)假設(shè)所給數(shù)據(jù)服從方差分析模型,建立方差分析表,A與B的交互效應(yīng)在?二0.05下是否顯著?3.0???Analyze-generallinearmodel-univariate,xtodependentvariable?andbtofixedfactor,okTestsofBetween-SubjectsEffectsDependentVariable:x

SourceTypeIIISumofSquaresdfMeanSquareFSig.CorrectedModel263.333a552.66721.545.0003650.66713650.6671.493E3.000a190.333295.16738.932.000b54.000154.00022.091.000a*b19.00029.5003.886.040Error44.000182.444Total3958.00024CorrectedTotal307.33323a.RSquared=.857(AdjustedRSquared=.817)由于交互效應(yīng)檢驗P值=0.04v0.05,所以小麥(A)與肥料(B)之間的交互效應(yīng)是顯著的.(2)若A與B的交互效應(yīng)顯著,分別就B的各水平B.(i=1,2),給出在A的各水平A.上ij的均值卩..的置信度為0.95的置信區(qū)間以及兩兩之差的置信度不小于0.95的Bonferroni同ij時置信區(qū)間.3.1???.Analyze-generallinearmodel-univariate,xtodependentvariable?tofixedfactor,posthoc-atoposthoctestsfor,bonferroni,options-atodisplaymeansfor.okaDependentVariable*aMeanStd.Error95%ConfidenceIntervalLowerBoundUpperBound19.000.6877.44510.555210.000.6878.44511.555313.500.68711.94515.055MultipleComparisonsxBonferroni(I)a(J)aMeanDifference(I-J)Std.ErrorSig.95%ConfidenceIntervalLowerBoundUpperBound12-1.00.972.991-3.851.853-4.50*.972.004-7.35-1.65211.00.972.991-1.853.853-3.50*.972.017-6.35-.65314.50*.972.0041.657.35

23.50*.972.017.656.35)Basedonobservedmeans.TheerrortermisMeanSquare(Error)=1.889.*.Themeandifferenceissignificantatthe.05level.固定肥料的Bi水平,叫2‘匕的置信度為0.95的置信區(qū)間分別為(7.445,10.555),(8.445,11.555),(11.945,15.055);%~^i2%一匕'卩12一匕的置信度不小于0.95的Bonferroni同時置信區(qū)間分別為(-3.85,1.85),(-7.35,-1.65),(-6.35,-0.65)2.Analyze-generallinearmodel-univariate,xtodependentvariable,atofixedfactor,posthoc-atoposthoctestsfor,bonferroni,options-atodisplaymeansfor,.okaDependentVariable*aMeanStd.Error95%ConfidenceIntervalLowerBoundUpperBound110.500.8668.54112.459212.000.86610.04113.959319.000.86617.04120.959MultipleComparisonsxBonferroni(I)a(J)aMeanDifference(I-J)Std.ErrorSig.95%ConfidenceIntervalLowerBoundUpperBound12-1.501.225.755-5.092.093-8.50*1.225.000-12.09-4.91211.501.225.755-2.095.093-7.00*1.225.001-10.59-3.41318.50*1.225.0004.9112.0927.00*1.225.0013.4110.59Basedonobservedmeans.TheerrortermisMeanSquare(Error)=3.000.*.Themeandifferenceissignificantatthe.05level.固定肥料的B水平,卩,卩,卩的置信度為0.95的置信區(qū)間分別2212223(8.541,12.459),(10.041,13.959),(17.041,20.959)卩―卩,卩―卩,卩―卩的置信度不小212221232223于0.95的Bonferroni同時置信區(qū)間分別為(-5.09,2.09),(-12.09,-4.91),(-10.59,-3.41)四、數(shù)據(jù)表A4給出了我國31個省市自治區(qū)的的經(jīng)濟發(fā)展狀況,所考察的八個指標為:x:1地區(qū)生產(chǎn)總值;x:居民消費水平;x:基本建設(shè)投資;x職工平均工資;x:居民消2345費價格指數(shù);x:商品零售價格指數(shù);x:貨物周轉(zhuǎn)量;x:工業(yè)總產(chǎn)值。678(1)從樣本相關(guān)系數(shù)矩陣R出發(fā)做主成分分析,求各主成分的貢獻率及前三個主成分的累計貢獻率;求出前三個主成分的表達式。Analyze-data-reduction-factor將八個成分全部選入variables,extraction-extract-numberoffactors-8,okTotalVarianceExplainedComponentInitialEigenvaluesExtractionSumsofSquaredLoadingsTotal%ofVarianceCumulative%Total%ofVarianceCumulative%13.74146.76146.7613.74146.76146.76122.39429.92676.6872.39429.92676.6873.7389.23185.918.7389.23185.9184.4806.00691.9235.4375.46697.3896.1421.77699.1657.060.74599.9108.007.090100.000ExtractionMethod:PrincipalComponentAnalysis.ComponentMatrixaComponent12345678地區(qū)生產(chǎn)總值.814.556-.116.031-.035-.028-.094-.061居民消費水平.766-.493.195-.076.212-.285.005.006基本建設(shè)投資.785.558-.141.085-.083-.013.196.003職工平均工資.604-.572.016.465.264.149-.002-.002居民消費價格指數(shù)-.314.599.666.298-.091-.051-.007.001商品零售價格指數(shù)-.397.721-.006-.131.552.029.013.000貨物周轉(zhuǎn)量.761-.181.458-.380-.005.185.017-.004工業(yè)總產(chǎn)值.823.540-.116.020-.042.019-.109.058Undefinederror#11401-Cannotopentextfile"F:\SPSS\spss\lang\en\spss.err":Nosuchfileordirea.8componentsextracted.各主成分的貢獻率分別為46.761%,29.926%,9.231%,6.006%,5.466%,1.776%,0.745%,0.09%.前三個主成分的累計貢獻率為85.918%.y1=0.814x1+0.766x2+0.785x3+0.604x4-0.314x5-0.397x6+0.761x7+0.823x8y2=0.556x1-0.493x2+0.558x3-0.572x4+0.599x5+0.721x6-0.181x7+0.540x8y3=-0.116x1+0.195x2-0.141x3+0.016x4+0.666x5-0.006x6+0.458x7-0.116x8(2)本相關(guān)系數(shù)矩陣R出發(fā)做因子分析,提取三個公共因子Fl,F2,F3,說明每個公共因子各由哪些指標解釋,并解釋每個公共因子的具體意義。1.求出三個公共因子Fl,F(xiàn)2,F(xiàn)3的表達式。Analyze-data-reduction-factor將八個成分全部選入variables,extraction-extract-numberoffactors-3,descriptives-correlationmatrixcoefficients,rotation-method-varimax,scores-saveasvariables,displayfactorscorecoefficientmatrix,okComponentScoreCoefficientMatrixComponent123地區(qū)生產(chǎn)總值.341-.075-.062居民消費水平-.031.380.092基本建設(shè)投資.343-.097-.089職工平均工資-.036.258-.125居民消費價格指數(shù)-.085.220.910商品零售價格指數(shù).114-.254.157貨物周轉(zhuǎn)量-.021.468.460工業(yè)總產(chǎn)值.339-.069-.065Undefinederror#11401-Cannotopentextfile"F:\SPSS\spss\lang\en\spss.err":NosuchfileordireUndefinederror#11408-Cannotopentextfile"F:\SPSS\spss\lang\en\spss.err":NosuchfileordireF1=0.341x1-0.031x2+0.343x3-0.036x4-0.085x5+0.114x6-0.021x7+0.339x8F2=-0.075x1+0.38x2-0.097x3+0.258x4+0.22x5-0.254x6+0.468x7-0.069x8F2=-0.062x1+0.092x2-0.089x3-0.125x4+0.910x5+0.157x6+0.460x7-0.065x82?根據(jù)三個公共因子Fl,F(xiàn)2,F3的得分,對31個省市自治區(qū)進行分層聚類分析,要求樣本間用歐氏平方距離,類間用類內(nèi)平均連接法,如果聚為4類,寫出每一類成員。Analyze-classify-hierarchicalcluster,Fl.F2.F3tovariables,地區(qū)tolabelcasesby,statistics-clustermembership-singlesolution-numberofcluster-4.method-clustermethod-medianclustering,save-clustermembership-singlesolution-numberofcluster-4.ok分類在表的最后一列可以讀出。五、表B1給出了煤凈化過程的一組數(shù)據(jù),Y為凈化后煤溶液中所含雜質(zhì)的重量,這是衡量凈化效率的指標,XI表示輸入凈化過程的溶液所含的煤與雜質(zhì)的比,,X2是溶液的PH值,X3是溶液的流量。假設(shè)Y與X,X和X之間滿足線性回歸關(guān)系123y二B+Px+Px+P+£,i二1,2,,12i01i12i2i3i其中£獨立同分布于N(0,b2).i(1)求回歸系數(shù)P0’P1,P2P3的最小二乘估計值和誤差方差^2的估計值,寫出回歸方程并對回歸系數(shù)作解釋;analyze-regression-linear,ytodependent,x1x2x3toindependent,statistics-confidenceintervals,save-unstandardized.Predictionindividual-individual.okCoefficientsaModelUnstandardizedCoefficientsStandardizedCoefficientstSig.95%ConfidenceIntervalforBBStd.ErrorBetaLowerBoundUpperBound1(Constant)397.08762.7576.327.000252.370541.805x1-110.75014.762-.841-7.502.000-144.792-76.708x215.5834.921.3553.167.0134.23626.931x3-.058.026-.255-2.274.053-.117.001a.DependentVariable:yANOVAbModelSumofSquaresdfMeanSquareFSig.1Regression31156.024310385.34123.827.000aResidual3486.8928435.862Total34642.91711Predictors:(Constant),x3,x2,x1DependentVariable:y回歸系數(shù)P,P,P,P的最小二乘估計值和誤差方差b2的估計值分別0123為:397.087,-110.75,15.583,-0.058和435.862y=-110.750*x1+15.583*x2-0.058*x3+397.087回歸系數(shù)解釋:397.087可理解為雜質(zhì)的基本重量,當PH值X和溶液流量X固定時,輸23入凈化過程的溶液所含的煤與雜質(zhì)的比X每提高一個單位,雜質(zhì)的重量Y將減少110.751個單位;當輸入凈化過程的溶液所含的煤與雜質(zhì)的比X和溶液流量X固定時,PH值X每132提高一個單位,雜質(zhì)的重量Y將增加15.583個單位;當輸入凈化過程的溶液所含的煤與雜質(zhì)的比X和PH值X固定時,溶液流量X每提高一個單位,雜質(zhì)的重量Y將減少0.058123個單位。(2)求出方差分析表,解釋對線性回歸關(guān)系顯著性檢驗的結(jié)果.求復(fù)相關(guān)系數(shù)的平方R2的值并解釋其意義;ANOVAbModelSumofSquaresdfMeanSquareFSig.1Regression31156.024310385.34123.827.000aResidual3486.8928435.862Total34642.91711Predictors:(Constant),x3,x2,x1DependentVariable:yModelSummaryModelRRSquareAdjustedRSquareStd.ErroroftheEstimate1.948a.899.86220.87730a.Predictors:(Constant),x3,x2,x1由于p值=0.000v0.05,所以回歸關(guān)系顯著R2值=0.899,說明Y與X,X,X之間的線性123回歸關(guān)系是顯著的(3)分別求0,卩和P的置信度為0.95的置信區(qū)間;123coefficients的后面部分0,丨和0的置信度為0.95的置信區(qū)間分別為(-144.792,-76.708),123(4.236,26.931),(-0.117,0.001)⑷對a二0.05,分別檢驗X,X和X對Y的影響是否顯著;123由于系數(shù)0,0對應(yīng)的檢驗P值分別為0.000,0.013都小于0.05,所以X和X對Y的1212影響是顯著的.而0對應(yīng)的檢驗P值為0.053大于0.05,所以X對Y的影響是不顯著的。33⑸若有X,X,X的值(x,x,x)二(2,8,1400),求Y的預(yù)測值及置信度為0.95的123010203置信區(qū)間.Y的預(yù)測值及置信度為0.95的置信區(qū)間分別為:218.64484和(166.93687,270.35282)在數(shù)據(jù)表中直接可以看見六、考察四種不同催化劑對某一化工產(chǎn)品得率的影響,在四種不同催化劑下分別做了6次實驗,得數(shù)據(jù)如表B2所示.假定各種催化劑下產(chǎn)品的得率服從同方差的正態(tài)分布,試在q二0.05下,檢驗四種不同催化劑對該化工產(chǎn)品的得率有無顯著影響.要寫出方差分析表。方差分析表:Analyze—comparemeans-one-wayanova,xtodependentlist,atofactor,okANOVAxSumofSquaresdfMeanSquareFSig.BetweenGroups.0063.0021.306.300WithinGroups.03020.001Total.03623由于檢驗P值=0.300>0.05,所以認為四種不同催化劑對該化工產(chǎn)品的得率在水平0.05下無顯著差異。七、為了研制一種治療枯草熱病的藥物,將兩種成分(A和B)各按三種不同劑量(低、中、高)混合,將36位自愿受試患者隨機分為9組,每組4人服用各種劑量混合下的藥物,記錄其病情緩解的時間(單位:小時)數(shù)據(jù)如表B3所示.(1)假設(shè)所給數(shù)據(jù)服從方差分析模型,建立方差分析表,A與B的交互效應(yīng)在?二0.05下是否顯著?B3.0....Analyze-generallinearmodel-univariate,xtodependentvariable?andbtofixedfactor,okTestsofBetween-SubjectsEffectsDependentVariable*SourceTypeIIISumofSquaresdfMeanSquareFSig.CorrectedModel373.105a846.638774.910.0001857.61011857.6103.086E4.000a220.0202110.0101.828E3.000b123.660261.8301.027E3.000

a*b29.42547.356122.227.000Error1.62527.060Total2232.34036CorrectedTotal374.73035a.RSquared=.996(AdjustedRSquared=.994)交互效應(yīng)檢驗P值=0.000v0.05,所以成分(A)與成分(B)之間的交互效應(yīng)是顯著的(2)若A與B的交互效應(yīng)顯著,分別就A的各水平A.(I二1,2,3),給出在B的各水平Bij上的均值卩的置信度為0.95的置信區(qū)間以及兩兩之差的置信度不小于0.95的Bonferroniij同時置信區(qū)間.B3.1???.Analyze-generallinearmodel-univariate,xtodependentvariablestofixedfactor,posthoc-atoposthoctestsfor,bonferroni,options-atodisplaymeansfor.okDependentVariable*bMeanStd.Error95%ConfidenceIntervalLowerBoundUpperBound12.475.1102.2262.72424.600.1104.3514.84934.575.1104.3264.824MultipleComparisonsxBonferroni(I)b(J)bMeanDifference(l-J)Std.ErrorSig.95%ConfidenceIntervalLowerBoundUpperBound12-2.1250*.15546.000-2.5810-1.66903-2.1000*.15546.000-2.5560-1.6440212.1250*.15546.0001.66902.58103.0250.155461.000-.4310.4810312.1000*.15546.0001.64402.55602-.0250.155461.000-.4810.4310Basedonobservedmeans.TheerrortermisMeanSquare(Error)=.048.*.Themeandifferenceissignificantatthe.05level.固定成分(A)的Ai水平,匕'匕的置信度為0.95的置信區(qū)間分別為(2.226,2.724),(4.351,4.849),(4.326,4.824);71—卩12‘71—卩13‘卩12—卩13的置信度不小于0.95的Bonferroni同時置信區(qū)間分別為(-2.581,-1.669),(-2.556,-1.644),(-0.431,0.481)B3.2???.Analyze-generallinearmodel-univariate,xtodependentvariablestofixedfactor,posthoc-atoposthoctestsfor,bonferroni,options-atodisplaymeansfor.okbDependentVariable*bMeanStd.Error95%ConfidenceIntervalLowerBoundUpperBound15.450.1275.1625.73828.925.1278.6379.21339.125.1278.8379.413MultipleComparisonsxBonferroni(I)b(J)bMeanDifference(I-J)Std.ErrorSig.95%ConfidenceIntervalLowerBoundUpperBound12-3.4750*.18028.000-4.0038-2.94623-3.6750*.18028.000-4.2038-3.1462213.4750*.18028.0002.94624.00383-.2000.18028.888-.7288.3288313.6750*.18028.0003.14624.20382.2000.18028.888-.3288.7288Basedonobservedmeans.TheerrortermisMeanSquare(Error)=.065.*.Themeandifferenceissignificantatthe.05level.固定成分(A)的A2水平,^21'^22'巴3的置信度為0.95的置信區(qū)間分別為(5.162,5.738),(8.637,9.213),(8.837,9.413);巴1—卩22’卩21—巴3’卩22—卩23的置信度不小于0.95的Bonferroni同時置信區(qū)間分別為(-4.0038,-2.9462),(-4.2038,-3.1462),(-0.7288,0.3288)

B3.3???.Analyze-generallinearmodel-univariate,xtodependentvariablestofixedfactor,posthoc-atoposthoctestsfor,bonferroni,options-atodisplaymeansfor.okDependentVariable*bMeanStd.Error95%ConfidenceIntervalLowerBoundUpperBound15.975.1305.6826.268210.275.1309.98210.568313.250.13012.95713.543MultipleComparisonsxBonferroni(I)b(J)bMeanDifference(I-J)Std.ErrorSig.95%ConfidenceIntervalLowerBoundUpperBound12-4.3000*.18333.000-4.8378-3.76223-7.2750*.18333.000-7.8128-6.7372214.3000*.18333.0003.76224.83783-2.9750*.18333.000-3.5128-2.4372317.2750*.18333.0006.73727.812822.9750*.18333.0002.43723.5128Basedonobservedmeans.TheerrortermisMeanSquare(Error)=.067.*.Themeandifferenceissignificantatthe.05level.固定成分(A)的A水平,卩,卩,卩的置信度為0.95的置信區(qū)間分別為TOC\o"1-5"\h\z3313233(5.682,6.268),(9.982,10.568),(12.957,13.543)屮—卩,卩—卩,卩—卩的置信度不小于3132313332330.95的Bonferroni同時置信區(qū)間分別為(-4.8378,-3.7622),(-7.8128,-6.7372),(-3.5128,-2.4372).八、表B4給出了1991年我國30個省、區(qū)、市城鎮(zhèn)居民的月平均消費數(shù)據(jù),所考察的八個指標如下(單位均為元/人)x:人均糧食支出;x:人均副食支出;x:人均煙酒茶支出;123x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論