概率分布期望方差匯總_第1頁(yè)
概率分布期望方差匯總_第2頁(yè)
概率分布期望方差匯總_第3頁(yè)
概率分布期望方差匯總_第4頁(yè)
概率分布期望方差匯總_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

./1.編號(hào)1,2,3的三位學(xué)生隨意入座編號(hào)為1,2,3的三個(gè)座位,每位學(xué)生坐一個(gè)座位,設(shè)與座位編號(hào)相同的學(xué)生的個(gè)數(shù)是X.〔1求隨機(jī)變量X的分布列;〔2求隨機(jī)變量X的數(shù)學(xué)期望和方差.解〔1P〔X=0==;P〔X=1==;P〔X=3==;∴隨機(jī)變量X的分布列為X013P〔2E〔X=1×+3×=1.D〔X=<1-0>2·+<1-1>2·+<3-1>2·=1.2某商場(chǎng)舉行抽獎(jiǎng)促銷活動(dòng),抽獎(jiǎng)規(guī)則是:從裝有9個(gè)白球、1個(gè)紅球的箱子中每次隨機(jī)地摸出一個(gè)球,記下顏色后放回,摸出一個(gè)紅球可獲得獎(jiǎng)金10元;摸出兩個(gè)紅球可獲得獎(jiǎng)金50元.現(xiàn)有甲、乙兩位顧客,規(guī)定:甲摸一次,乙摸兩次,令X表示甲、乙兩人摸球后獲得的獎(jiǎng)金總額.求:〔1X的分布列;〔2X的均值.解〔1X的所有可能取值為0,10,20,50,60.P〔X=0==;P〔X=10=×+×××=;P<X=20>=×××=;P<X=50>=×=;P<X=60>==.故X的分布列為X010205060P〔2E〔X=0×+10×+20×+50×+60×=3.3<元>.3〔本小題滿分13分為了解甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽出取14件和5件,測(cè)量產(chǎn)品中的微量元素x,y的含量〔單位:毫克.下表是乙廠的5件產(chǎn)品的測(cè)量數(shù)據(jù):編號(hào)12345x169178166175180y7580777081〔1已知甲廠生產(chǎn)的產(chǎn)品共有98件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;〔2當(dāng)產(chǎn)品中的微量元素x,y滿足x≥175,且y≥75時(shí),該產(chǎn)品為優(yōu)等品。用上述樣本數(shù)據(jù)估計(jì)乙廠生產(chǎn)的優(yōu)等品的數(shù)量;〔3從乙廠抽出的上述5件產(chǎn)品中,隨機(jī)抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列極其均值〔即數(shù)學(xué)期望。 解:〔1,即乙廠生產(chǎn)的產(chǎn)品數(shù)量為35件?!?易見只有編號(hào)為2,5的產(chǎn)品為優(yōu)等品,所以乙廠生產(chǎn)的產(chǎn)品中的優(yōu)等品 故乙廠生產(chǎn)有大約〔件優(yōu)等品,〔3的取值為0,1,2。 所以的分布列為012P 故4XX理18.〔本小題滿分12分某商店試銷某種商品20天,獲得如下數(shù)據(jù):日銷售量〔件0123頻數(shù)1595試銷結(jié)束后〔假設(shè)該商品的日銷售量的分布規(guī)律不變,設(shè)某天開始營(yíng)業(yè)時(shí)有該商品3件,當(dāng)天營(yíng)業(yè)結(jié)束后檢查存貨,若發(fā)現(xiàn)存貨少于2件,則當(dāng)天進(jìn)貨補(bǔ)充至3件,否則不進(jìn)貨,將頻率視為概率?!并袂螽?dāng)天商品不進(jìn)貨的概率;〔Ⅱ記X為第二天開始營(yíng)業(yè)時(shí)該商品的件數(shù),求X的分布列和數(shù)學(xué)期型。4.解〔I〔"當(dāng)天商品不進(jìn)貨"〔"當(dāng)天商品銷售量為0件"〔"當(dāng)天商品銷售量為1件"〔Ⅱ由題意知,的可能取值為2,3.〔"當(dāng)天商品銷售量為1件"〔"當(dāng)天商品銷售量為0件"〔"當(dāng)天商品銷售量為2件"〔"當(dāng)天商品銷售量為3件"故的分布列為23的數(shù)學(xué)期望為5、XX理16.〔本小題滿分12分某飲料公司招聘了一名員工,現(xiàn)對(duì)其進(jìn)行一項(xiàng)測(cè)試,以使確定工資級(jí)別,公司準(zhǔn)備了兩種不同的飲料共8杯,其顏色完全相同,并且其中4杯為A飲料,另外4杯為B飲料,公司要求此員工一一品嘗后,從8杯飲料中選出4杯A飲料,若4杯都選對(duì),則月工資定為3500元,若4杯選對(duì)3杯,則月工資定為2800元,否則月工資定為2100元,令X表示此人選對(duì)A飲料的杯數(shù),假設(shè)此人對(duì)A和B兩種飲料沒(méi)有鑒別能力.〔1求X的分布列;〔2求此員工月工資的期望。.〔本小題滿分12分解:〔1X的所有可能取值為:0,1,2,3,4即X01234P〔2令Y表示新錄用員工的月工資,則Y的所有可能取值為2100,2800,3500所以新錄用員工月工資的期望為2280元.6、XX理〔19〔本小題滿分12分某農(nóng)場(chǎng)計(jì)劃種植某種新作物,為此對(duì)這種作物的兩個(gè)品種〔分別稱為品種家和品種乙進(jìn)行田間試驗(yàn).選取兩大塊地,每大塊地分成n小塊地,在總共2n小塊地中,隨機(jī)選n小塊地種植品種甲,另外n小塊地種植品種乙.〔I假設(shè)n=4,在第一大塊地中,種植品種甲的小塊地的數(shù)目記為X,求X的分布列和數(shù)學(xué)期望;〔II試驗(yàn)時(shí)每大塊地分成8小塊,即n=8,試驗(yàn)結(jié)束后得到品種甲和品種乙在個(gè)小塊地上的每公頃產(chǎn)量〔單位:kg/hm2如下表:品種甲403397390404388400412406品種乙419403412418408423400413分別求品種甲和品種乙的每公頃產(chǎn)量的樣本平均數(shù)和樣本方差;根據(jù)試驗(yàn)結(jié)果,你認(rèn)為應(yīng)該種植哪一品種?附:樣本數(shù)據(jù)的的樣本方差,其中為樣本平均數(shù).6.解:〔IX可能的取值為0,1,2,3,4,且即X的分布列為………………4分X的數(shù)學(xué)期望為………………6分〔II品種甲的每公頃產(chǎn)量的樣本平均數(shù)和樣本方差分別為:………………8分品種乙的每公頃產(chǎn)量的樣本平均數(shù)和樣本方差分別為:………………10分由以上結(jié)果可以看出,品種乙的樣本平均數(shù)大于品種甲的樣本平均數(shù),且兩品種的樣本方差差異不大,故應(yīng)該選擇種植品種乙.7、XX理18.〔本小題滿分12分紅隊(duì)隊(duì)員甲、乙、丙與藍(lán)隊(duì)隊(duì)員A、B、C進(jìn)行圍棋比賽,甲對(duì)A,乙對(duì)B,丙對(duì)C各一盤,已知甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5,假設(shè)各盤比賽結(jié)果相互獨(dú)立?!并袂蠹t隊(duì)至少兩名隊(duì)員獲勝的概率;〔Ⅱ用表示紅隊(duì)隊(duì)員獲勝的總盤數(shù),求的分布列和數(shù)學(xué)期望.7.解:〔I設(shè)甲勝A的事件為D,乙勝B的事件為E,丙勝C的事件為F,則分別表示甲不勝A、乙不勝B,丙不勝C的事件。因?yàn)橛蓪?duì)立事件的概率公式知紅隊(duì)至少兩人獲勝的事件有:由于以上四個(gè)事件兩兩互斥且各盤比賽的結(jié)果相互獨(dú)立,因此紅隊(duì)至少兩人獲勝的概率為〔II由題意知可能的取值為0,1,2,3。又由〔I知是兩兩互斥事件,且各盤比賽的結(jié)果相互獨(dú)立,因此由對(duì)立事件的概率公式得所以的分布列為:0123P0.10.350.40.15因此20.解〔ⅠAi表示事件"甲選擇路徑Li時(shí),40分鐘內(nèi)趕到火車站",Bi表示事件"乙選擇路徑Li時(shí),50分鐘內(nèi)趕到火車站",i=1,2.用頻率估計(jì)相應(yīng)的概率可得P〔A1=0.1+0.2+0.3=0.6,P〔A2=0.1+0.4=0.5,P〔A1>P〔A2,甲應(yīng)選擇LiP〔B1=0.1+0.2+0.3+0.2=0.8,P〔B2=0.1+0.4+0.4=0.9,P〔B2>P〔B1,乙應(yīng)選擇L2.〔ⅡA,B分別表示針對(duì)〔Ⅰ的選擇方案,甲、乙在各自允許的時(shí)間內(nèi)趕到火車站,由〔Ⅰ知,又由題意知,A,B獨(dú)立,的分布列為X012P0.040.420.548、XX理18.〔本小題共12分本著健康、低碳的生活理念,租自行車騎游的人越來(lái)越多。某自行車租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是每車每次租不超過(guò)兩小時(shí)免費(fèi),超過(guò)兩小時(shí)的收費(fèi)標(biāo)準(zhǔn)為2元〔不足1小時(shí)的部分按1小時(shí)計(jì)算。有人獨(dú)立來(lái)該租車點(diǎn)則車騎游。各租一車一次。設(shè)甲、乙不超過(guò)兩小時(shí)還車的概率分別為;兩小時(shí)以上且不超過(guò)三小時(shí)還車的概率分別為;兩人租車時(shí)間都不會(huì)超過(guò)四小時(shí)?!并袂蠹住⒁覂扇怂蹲廛囐M(fèi)用相同的概率;〔Ⅱ求甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量,求的分布列與數(shù)學(xué)期望;8.解析:〔1所付費(fèi)用相同即為元。設(shè)付0元為,付2元為,付4元為則所付費(fèi)用相同的概率為〔2設(shè)甲,乙兩個(gè)所付的費(fèi)用之和為,可為分布列9、天津理16.〔本小題滿分13分學(xué)校游園活動(dòng)有這樣一個(gè)游戲項(xiàng)目:甲箱子里裝有3個(gè)白球、2個(gè)黑球,乙箱子里裝有1個(gè)白球、2個(gè)黑球,這些球除顏色外完全相同,每次游戲從這兩個(gè)箱子里各隨機(jī)摸出2個(gè)球,若摸出的白球不少于2個(gè),則獲獎(jiǎng).〔每次游戲結(jié)束后將球放回原箱〔Ⅰ求在1次游戲中,〔i摸出3個(gè)白球的概率;〔ii獲獎(jiǎng)的概率;〔Ⅱ求在2次游戲中獲獎(jiǎng)次數(shù)的分布列及數(shù)學(xué)期望.9.本小題主要考查古典概型及其概率計(jì)算公式、離散型隨機(jī)變量的分布列、互斥事件和相互獨(dú)立事件等基礎(chǔ)知識(shí),考查運(yùn)用概率知識(shí)解決簡(jiǎn)單的實(shí)際問(wèn)題的能力.滿分13分.〔I〔i解:設(shè)"在1次游戲中摸出i個(gè)白球"為事件則〔ii解:設(shè)"在1次游戲中獲獎(jiǎng)"為事件B,則,又且A2,A3互斥,所以〔II解:由題意可知X的所有可能取值為0,1,2.所以X的分布列是X012PX的數(shù)學(xué)期望10XX理17.〔本小題滿分13分〔Ⅰ小問(wèn)5分,〔Ⅱ小問(wèn)8分某市公租房的房源位于A,B,C三個(gè)片區(qū),設(shè)每位申請(qǐng)人只申請(qǐng)其中一個(gè)片區(qū)的房源,且申請(qǐng)其中任一個(gè)片區(qū)的房源是等可能的求該市的任4位申請(qǐng)人中:〔Ⅰ恰有2人申請(qǐng)A片區(qū)房源的概率;〔Ⅱ申請(qǐng)的房源所在片區(qū)的個(gè)數(shù)的分布列與期望10.〔本題13分解:這是等可能性事件的概率計(jì)算問(wèn)題.〔I解法一:所有可能的申請(qǐng)方式有34種,恰有2人申請(qǐng)A片區(qū)房源的申請(qǐng)方式種,從而恰有2人申請(qǐng)A片區(qū)房源的概率為解法二:設(shè)對(duì)每位申請(qǐng)人的觀察為一次試驗(yàn),這是4次獨(dú)立重復(fù)試驗(yàn).記"申請(qǐng)A片區(qū)房源"為事件A,則從而,由獨(dú)立重復(fù)試驗(yàn)中事件A恰發(fā)生k次的概率計(jì)算公式知,恰有2人申請(qǐng)A片區(qū)房源的概率為〔IIξ的所有可能值為1,2,3.又綜上知,ξ有分布列ξ123P從而有11.〔2008·全國(guó)Ⅰ理,20已知5只動(dòng)物中有1只患有某種疾病,需要通過(guò)化驗(yàn)血液來(lái)確定患病的動(dòng)物.血液化驗(yàn)結(jié)果呈陽(yáng)性的即為患病動(dòng)物,呈陰性的即沒(méi)患病.下面是兩種化驗(yàn)方案:方案甲:逐個(gè)化驗(yàn),直到能確定患病動(dòng)物為止.方案乙:先任取3只,將它們的血液混在一起化驗(yàn).若結(jié)果呈陽(yáng)性則表明患病動(dòng)物為這3只中的1只,然后再逐個(gè)化驗(yàn),直到能確定患病動(dòng)物為止;若結(jié)果呈陰性則在另外2只中任取1只化驗(yàn).<1>求依方案甲所需化驗(yàn)次數(shù)不少于依方案乙所需化驗(yàn)次數(shù)的概率;<2>表示依方案乙所需化驗(yàn)次數(shù),求的期望.解〔1設(shè)1、2分別表示依方案甲和依方案乙需化驗(yàn)的次數(shù),P表示對(duì)應(yīng)的概率,則方案甲中1的分布列為1234P方案乙中2的分布列為123P0若甲化驗(yàn)次數(shù)不少于乙化驗(yàn)次數(shù),則P=P<1=1>×P<2=1>+P<1=2>×[P<2=1>+P<2=2>]+P<1=3>×[P<2=1>+P<2=2>+P<2=3>]+P<1=4>=0+×〔0++×〔0+++==0.72.<2>E〔=1×0+2×+3×==2.4.12.甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為與p,且乙投球2次均未命中的概率為.〔1求乙投球的命中率p;〔2若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學(xué)期望.解<1>設(shè)"甲投球一次命中"為事件A,"乙投球一次命中"為事件B.由題意得<1-P<B>>2=<1-p>2=,解得p=或p=〔舍去,所以乙投球的命中率為.〔2由題設(shè)和〔1知P<A>=,P<>=,P<B>=,P<>=.可能的取值為0,1,2,3,故P<=0>=P<>P<>=×=,P<=1>=P<A>P<>+P〔BP〔P〔=×+2×××=,P<=3>=P<A>P<B·B>=×=,P<=2>=1-P<=0>-P<=1>-P<=3>=.的分布列為0123P的數(shù)學(xué)期望E〔=0×+1×+2×+3×=2.13.設(shè)在12個(gè)同類型的零件中有2個(gè)次品,抽取3次進(jìn)行檢驗(yàn),每次抽取一個(gè),并且取出不再放回,若以和分別表示取出次品和正品的個(gè)數(shù).〔1求的分布列、期望值及方差;〔2求的分布列、期望值及方差.解〔1的可能值為0,1,2.若=0,表示沒(méi)有取出次品,其概率為:P〔=0==;同理,有P〔=1==;P〔=2==.∴的分布列為:012P∴E〔=0×+1×+2×=.D〔=<0->2×+×+×=++=.<2>的可能值為1,2,3,顯然+=3.P<=1>=P<=2>=,P<=2>=P<=1>=,P<=3>=P<=0>=.∴的分布列為:123PE〔=E〔3-=3-E〔=3-=.∵=-+3,∴D〔=〔-12D〔=.14.某地區(qū)的一個(gè)季節(jié)下雨天的概率是0.3,氣象臺(tái)預(yù)報(bào)天氣的準(zhǔn)確率為0.8.某廠生產(chǎn)的產(chǎn)品當(dāng)天怕雨,若下雨而不做處理,每天會(huì)損失3000元,若對(duì)當(dāng)天產(chǎn)品作防雨處理,可使產(chǎn)品不受損失,費(fèi)用是每天500元.〔1若該廠任其自然不作防雨處理,寫出每天損失的分布列,并求其平均值;〔2若該廠完全按氣象預(yù)報(bào)作防雨處理,以表示每天的損失,寫出的分布列.計(jì)算的平均值,并說(shuō)明按氣象預(yù)報(bào)作防雨處理是否是正確的選擇?解〔1設(shè)為損失數(shù),分布列為:03000P0.70.3∴E〔=3000×0.3=900〔元.〔2設(shè)為損失數(shù),則P〔=0=0.7×0.8=0.56.P<=500>=0.3×0.8+0.7×0.2=0.38.P〔=3000=0.3×0.2=0.06.分布列為:05003000P0.560.380.06∴E〔=0+500×0.38+3000×0.06=370平均每天損失為370元.∵370<900,∴按天氣預(yù)報(bào)作防雨處理是正確的選擇.15.〔2008·XX理,17袋中有20個(gè)大小相同的球,其中記上0號(hào)的有10個(gè),記上n號(hào)的有n個(gè)〔n=1,2,3,4.現(xiàn)從袋中任取一球,表示所取球的標(biāo)號(hào).〔1求的分布列、期望和方差;〔2若=a+b,E〔=1,D〔=11,試求a,b的值.解〔1的分布列為012

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論