高中化高三大題練習(xí)解題8概率與統(tǒng)計(jì)專題8第37練_第1頁(yè)
高中化高三大題練習(xí)解題8概率與統(tǒng)計(jì)專題8第37練_第2頁(yè)
高中化高三大題練習(xí)解題8概率與統(tǒng)計(jì)專題8第37練_第3頁(yè)
高中化高三大題練習(xí)解題8概率與統(tǒng)計(jì)專題8第37練_第4頁(yè)
高中化高三大題練習(xí)解題8概率與統(tǒng)計(jì)專題8第37練_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

綜合復(fù)習(xí)資料高中化學(xué)第37練用樣本估計(jì)總體[題型分析·高考展望]用樣本估計(jì)總體在高考中也是熱點(diǎn)部分,考查形式主要是選擇題、填空題或是與概率結(jié)合的綜合性解答題,重點(diǎn)是頻率分布直方圖以及數(shù)字特征,屬于比較簡(jiǎn)單的題目.??碱}型精析題型一頻率分布直方圖的應(yīng)用例1(2015·廣東)某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖.(1)求直方圖中x的值;(2)求月平均用電量的眾數(shù)和中位數(shù);(3)在月平均用電量為[220,240),[240,260),[260,280),[280,300]的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?點(diǎn)評(píng)利用頻率分布直方圖估計(jì)樣本的數(shù)字特征(1)中位數(shù):在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積相等,由此可以估計(jì)中位數(shù)的值.(2)平均數(shù):平均數(shù)的頻率分布直方圖的“重心”,等于圖中每個(gè)小矩形的面積乘以小矩形底邊中點(diǎn)的橫坐標(biāo)之和.(3)眾數(shù):在頻率分布直方圖中,眾數(shù)是最高的矩形底邊的中點(diǎn)的橫坐標(biāo).變式訓(xùn)練1某校100名學(xué)生期中考試語(yǔ)文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是[50,60),[60,70),[70,80),[80,90),[90,100].(1)求圖中a的值;(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分;(3)若這100名學(xué)生語(yǔ)文成績(jī)某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如下表所示,求數(shù)學(xué)成績(jī)?cè)赱50,90)之外的人數(shù).分?jǐn)?shù)段[50,60)[60,70)[70,80)[80,90)x∶y1∶12∶13∶44∶5題型二莖葉圖的應(yīng)用例2(1)(2015·重慶)重慶市2013年各月的平均氣溫(°C)數(shù)據(jù)的莖葉圖如下:0891258200338312則這組數(shù)據(jù)的中位數(shù)是()A.19B.20C.21.5D.23(2)(2015·山東)為比較甲、乙兩地某月14時(shí)的氣溫情況,隨機(jī)選取該月中的5天,將這5天中14時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖.考慮以下結(jié)論:甲乙986289113012①甲地該月14時(shí)的平均氣溫低于乙地該月14時(shí)的平均氣溫;②甲地該月14時(shí)的平均氣溫高于乙地該月14時(shí)的平均氣溫;③甲地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差小于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差;④甲地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差大于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差.其中根據(jù)莖葉圖能得到的統(tǒng)計(jì)結(jié)論的編號(hào)為()A.①③ B.①④C.②③ D.②④點(diǎn)評(píng)由于莖葉圖完全反映了所有的原始數(shù)據(jù),解決由莖葉圖給出的統(tǒng)計(jì)圖表試題時(shí),就要充分使用這個(gè)圖表提供的數(shù)據(jù)進(jìn)行相關(guān)的計(jì)算或者是對(duì)某些問(wèn)題作出判斷,這類試題往往伴隨著對(duì)數(shù)據(jù)組的平均值或者是方差的計(jì)算等.變式訓(xùn)練2為調(diào)查甲、乙兩校高三年級(jí)學(xué)生某次聯(lián)考的數(shù)學(xué)成績(jī)情況,用簡(jiǎn)單隨機(jī)抽樣,從這兩校中各抽取30名高三年級(jí)學(xué)生,以他們的數(shù)學(xué)成績(jī)(百分制)作為樣本,樣本數(shù)據(jù)的莖葉圖如下:(1)若甲校高三年級(jí)每位學(xué)生被抽取的概率為0.05,求甲校高三年級(jí)學(xué)生總?cè)藬?shù),并估計(jì)甲校高三年級(jí)這次聯(lián)考數(shù)學(xué)成績(jī)的及格率(60分及60分以上為及格);(2)設(shè)甲、乙兩校高三年級(jí)學(xué)生這次聯(lián)考數(shù)學(xué)平均成績(jī)分別為eq\x\to(x)1,eq\x\to(x)2,估計(jì)eq\x\to(x)1-eq\x\to(x)2的值.題型三用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征例3(1)(2014·陜西)某公司10位員工的月工資(單位:元)為x1,x2,…,x10,其均值和方差分別為eq\x\to(x)和s2,若從下月起每位員工的月工資增加100元,則這10位員工下月工資的均值和方差分別為()A.eq\x\to(x),s2+1002 B.eq\x\to(x)+100,s2+1002C.eq\x\to(x),s2 D.eq\x\to(x)+100,s2(2)甲、乙兩名射擊運(yùn)動(dòng)員參加某大型運(yùn)動(dòng)會(huì)的預(yù)選賽,他們分別射擊了5次,成績(jī)?nèi)缦卤?單位:環(huán)):甲108999乙1010799如果甲、乙兩人中只有1人入選,則入選的最佳人選應(yīng)是________.點(diǎn)評(píng)平均數(shù)與方差都是重要的數(shù)字特征,是對(duì)總體的一種簡(jiǎn)明的描述,它們所反映的情況有著重要的實(shí)際意義,平均數(shù)、中位數(shù)、眾數(shù)描述其集中趨勢(shì),方差和標(biāo)準(zhǔn)差描述其波動(dòng)大小.變式訓(xùn)練3甲、乙二人參加某體育項(xiàng)目訓(xùn)練,近期的五次測(cè)試成績(jī)得分情況如圖.(1)分別求出兩人得分的平均數(shù)與方差;(2)根據(jù)圖和上面算得的結(jié)果,對(duì)兩人的訓(xùn)練成績(jī)作出評(píng)價(jià).高考題型精練1.(2015·陜西)某中學(xué)初中部共有110名教師,高中部共有150名教師,其性別比例如圖所示,則該校女教師的人數(shù)為()A.167 B.137C.123 D.932.某校從高一年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生,將他們的模塊測(cè)試成績(jī)分成6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.已知高一年級(jí)共有學(xué)生600名,據(jù)此估計(jì),該模塊測(cè)試成績(jī)不少于60分的學(xué)生人數(shù)為()A.588 B.480C.450 D.1203.(2014·廣東)已知某地區(qū)中小學(xué)生人數(shù)和近視情況分別如圖①和圖②所示.為了解該地區(qū)中小學(xué)生的近視形成原因,用分層抽樣的方法抽取2%的學(xué)生進(jìn)行調(diào)查,則樣本容量和抽取的高中生近視人數(shù)分別為()A.200,20 B.100,20C.200,10 D.100,104.已知記錄7名運(yùn)動(dòng)員選手身高(單位:cm)的莖葉圖如圖,其平均身高為177cm,因有一名運(yùn)動(dòng)員的身高記錄看不清楚,設(shè)其末位數(shù)為x,那么推斷x的值為()A.5 B.6C.7 D.85.在樣本的頻率分布直方圖中,一共有n個(gè)小矩形.若中間一個(gè)小矩形的面積等于其余(n-1)個(gè)小矩形面積之和的eq\f(1,5),且樣本容量為240,則中間一組的頻數(shù)是()A.32 B.30C.40 D.606.若一個(gè)樣本容量為8的樣本的平均數(shù)為5,方差為2.現(xiàn)樣本中又加入一個(gè)新數(shù)據(jù)5,此時(shí)樣本容量為9,平均數(shù)為eq\x\to(x),方差為s2,則()A.eq\x\to(x)=5,s2<2 B.eq\x\to(x)=5,s2>2C.eq\x\to(x)>5,s2<2 D.eq\x\to(x)>5,s2>27.某學(xué)校隨機(jī)抽取20個(gè)班,調(diào)查各班中有網(wǎng)上購(gòu)物經(jīng)歷的人數(shù),所得數(shù)據(jù)的莖葉圖如圖所示,以組距為5將數(shù)據(jù)分組成[0,5),[5,10),…,[30,35),[35,40]時(shí),所作的頻率分布直方圖是()0731764430275543203854308.某班的全體學(xué)生參加英語(yǔ)測(cè)試,成績(jī)的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為[20,40),[40,60),[60,80),[80,100].若低于60分的人數(shù)是15,則該班的學(xué)生人數(shù)是()A.45B.50C.55D.609.如圖是某賽季甲、乙兩名籃球運(yùn)動(dòng)員每場(chǎng)比賽得分的莖葉圖,則甲、乙兩人這幾場(chǎng)比賽得分的中位數(shù)分別是________.10.甲、乙兩種冬小麥試驗(yàn)品種連續(xù)5年的平均單位面積產(chǎn)量如下(單位:t/hm2)品種第1年第2年第3年第4年第5年甲9.89.910.11010.2乙9.410.310.89.79.8其中產(chǎn)量比較穩(wěn)定的小麥品種是________.11.(2014·北京)從某校隨機(jī)抽取100名學(xué)生,獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表和頻率分布直方圖:組號(hào)分組頻數(shù)1[0,2)62[2,4)83[4,6)174[6,8)225[8,10)256[10,12)127[12,14)68[14,16)29[16,18)2合計(jì)100(1)從該校隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生該周課外閱讀時(shí)間少于12小時(shí)的概率;(2)求頻率分布直方圖中的a,b的值;(3)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,試估計(jì)樣本中的100名學(xué)生該周課外閱讀時(shí)間的平均數(shù)在第幾組.(只需寫出結(jié)論)12.(2014·廣東)某車間20名工人年齡數(shù)據(jù)如下表:年齡(歲)工人數(shù)(人)191283293305314323401合計(jì)20(1)求這20名工人年齡的眾數(shù)與極差;(2)以十位數(shù)為莖,個(gè)位數(shù)為葉,作出這20名工人年齡的莖葉圖;(3)求這20名工人年齡的方差.

答案精析第37練用樣本估計(jì)總體??碱}型精析例1解(1)由(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1得:x=0.0075,所以直方圖中x的值是0.0075.(2)月平均用電量的眾數(shù)是eq\f(220+240,2)=230.因?yàn)?0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用電量的中位數(shù)在[220,240)內(nèi),設(shè)中位數(shù)為a,由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5得:a=224,所以月平均用電量的中位數(shù)是224.(3)月平均用電量為[220,240]的用戶有0.0125×20×100=25戶,月平均用電量為[240,260)的用戶有0.0075×20×100=15戶,月平均用電量為[260,280)的用戶有0.005×20×100=10戶,月平均用電量為[280,300]的用戶有0.0025×20×100=5戶,抽取比例=eq\f(11,25+15+10+5)=eq\f(1,5),所以月平均用電量在[220,240)的用戶中應(yīng)抽取25×eq\f(1,5)=5戶.變式訓(xùn)練1解(1)由頻率分布直方圖知(2a+0.02+0.03+0.04)×10=1,解得a=0.005.(2)由頻率分布直方圖知這100名學(xué)生語(yǔ)文成績(jī)的平均分為55×0.005×10+65×0.04×10+75×0.03×10+85×0.02×10+95×0.005×10=73(分).(3)由頻率分布直方圖知語(yǔ)文成績(jī)?cè)赱50,60),[60,70),[70,80),[80,90)各分?jǐn)?shù)段的人數(shù)依次為0.005×10×100=5,0.04×10×100=40,0.03×10×100=30,0.02×10×100=20.由題中給出的比例關(guān)系知數(shù)學(xué)成績(jī)?cè)谏鲜龈鞣謹(jǐn)?shù)段的人數(shù)依次為5,40×eq\f(1,2)=20,30×eq\f(4,3)=40,20×eq\f(5,4)=25.故數(shù)學(xué)成績(jī)?cè)赱50,90)之外的人數(shù)為100-(5+20+40+25)=10.例2(1)B(2)B解析(1)從莖葉圖知所有數(shù)據(jù)為8,9,12,15,18,20,20,23,23,28,31,32,中間兩個(gè)數(shù)為20,20,故中位數(shù)為20,選B.(2)甲地5天的氣溫為:26,28,29,31,31,其平均數(shù)為eq\x\to(x)甲=eq\f(26+28+29+31+31,5)=29;方差為seq\o\al(2,甲)=eq\f(1,5)[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=3.6;標(biāo)準(zhǔn)差為s甲=eq\r(3.6).乙地5天的氣溫為:28,29,30,31,32,其平均數(shù)為eq\x\to(x)乙=eq\f(28+29+30+31+32,5)=30;方差為seq\o\al(2,乙)=eq\f(1,5)[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2;標(biāo)準(zhǔn)差為s乙=eq\r(2).∴eq\x\to(x)甲<eq\x\to(x)乙,s甲>s乙.變式訓(xùn)練2解(1)設(shè)甲校高三年級(jí)學(xué)生總?cè)藬?shù)為n,由已知條件eq\f(30,n)=0.05,則n=600.在甲校高三年級(jí)抽取的30名學(xué)生中成績(jī)?cè)?0分及60分以上的人數(shù)為25,因此甲校高三年級(jí)這次聯(lián)考的及格率大約是eq\f(25,30)=eq\f(5,6)=83.3%.(2)eq\x\to(x)1=[(7+13+24+26+22+2)+40+50×4+60×9+70×9+80×5+90×2]÷30=eq\f(2084,30);eq\x\to(x)2=[(5+14+17+33+20)+40+50×3+60×10+70×10+80×5+90]÷30=eq\f(2069,30).eq\x\to(x)1-eq\x\to(x)2=eq\f(2084,30)-eq\f(2069,30)=eq\f(1,2).例3(1)D(2)甲解析(1)eq\f(x1+x2+…+x10,10)=eq\x\to(x),yi=xi+100,所以y1,y2,…,y10的均值為eq\x\to(x)+100,方差不變,故選D.(2)eq\x\to(x)甲=eq\x\to(x)乙=9環(huán),seq\o\al(2,甲)=eq\f(1,5)[(10-9)2+(8-9)2+(9-9)2+(9-9)2+(9-9)2]=eq\f(2,5),seq\o\al(2,乙)=eq\f(1,5)[(10-9)2+(10-9)2+(7-9)2+(9-9)2+(9-9)2]=eq\f(6,5)>seq\o\al(2,甲),故甲更穩(wěn)定,故最佳人選應(yīng)為甲.變式訓(xùn)練3解(1)由題圖象可得甲、乙兩人五次測(cè)試的成績(jī)分別為甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.eq\x\to(x)甲=eq\f(10+13+12+14+16,5)=13,eq\x\to(x)乙=eq\f(13+14+12+12+14,5)=13,seq\o\al(2,甲)=eq\f(1,5)[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4,seq\o\al(2,乙)=eq\f(1,5)[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.(2)由seq\o\al(2,甲)>seq\o\al(2,乙)可知乙的成績(jī)較穩(wěn)定.從折線圖看,甲的成績(jī)基本呈上升狀態(tài),而乙的成績(jī)上下波動(dòng),可知甲的成績(jī)?cè)诓粩嗵岣撸业某煽?jī)則無(wú)明顯提高.高考題型精練1.B[由題干扇形統(tǒng)計(jì)圖可得該校女教師人數(shù)為:110×70%+150×(1-60%)=137.故選B.]2.B[∵少于60分的學(xué)生人數(shù)為600×(0.05+0.15)=120,∴不少于60分的學(xué)生人數(shù)為480.]3.A[該地區(qū)中小學(xué)生總?cè)藬?shù)為3500+2000+4500=10000,則樣本容量為10000×2%=200,其中抽取的高中生近視人數(shù)為2000×2%×50%=20,故選A.]4.D[據(jù)莖葉圖可知eq\f(180+181+170+173+170+x+178+179,7)=177,解得x=8.]5.C[設(shè)中間小矩形的面積為S,則由題意知eq\f(S,1-S)=eq\f(1,5),解得S=eq\f(1,6),即頻率為eq\f(1,6),所以中間一組的頻數(shù)為eq\f(1,6)×240=40,故選C.]6.A[∵eq\f(1,8)(x1+x2+…+x8)=5,∴eq\f(1,9)(x1+x2+…+x8+5)=5,∴eq\x\to(x)=5,由方差定義及意義可知加入新數(shù)據(jù)5后,樣本數(shù)據(jù)取值的穩(wěn)定性比原來(lái)強(qiáng),∴s2<2,故選A.]7.A[由于頻率分布直方圖的組距為5,排除C、D,又[0,5),[5,10)兩組各一人,排除B,應(yīng)選A.]8.B[由頻率分布直方圖,低于60分的頻率為(0.01+0.005)×20=0.3.∴該班學(xué)生人數(shù)n=eq\f(15,0.3)=50.]9.18,23解析根據(jù)莖葉圖分別將甲乙得分按從小到大順序排起來(lái),根據(jù)中位數(shù)定義易知甲、乙中位數(shù)分別為18,23.10.甲解析eq\x\to(x)甲=eq\f(1,5)(9.8+9.9+10.1+10+10.2)=10.0,eq\x\to(x)乙=eq\f(1,5)(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論