版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆江蘇省蘇州平江中學數(shù)學九上期末質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如果反比例函數(shù)y=的圖象經(jīng)過點(﹣5,3),則k=()A.15 B.﹣15 C.16 D.﹣162.如圖,一邊靠墻(墻有足夠長),其它三邊用12m長的籬笆圍成一個矩形(ABCD)花園,這個花園的最大面積是()A.16m2 B.12m2 C.18m2 D.以上都不對3.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.4.下列四種說法:①如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等;②將1010減去它的,再減去余下的,再減去余下的,再減去余下的,……,依此類推,直到最后減去余下的,最后的結(jié)果是1;③實驗的次數(shù)越多,頻率越靠近理論概率;④對于任何實數(shù)x、y,多項式的值不小于1.其中正確的個數(shù)是()A.1 B.1 C.3 D.45.如圖,在x軸的上方,直角∠BOA繞原點O按順時針方向旋轉(zhuǎn).若∠BOA的兩邊分別與函數(shù)、的圖象交于B、A兩點,則∠OAB大小的變化趨勢為()A.逐漸變小 B.逐漸變大 C.時大時小 D.保持不變6.如圖,一次函數(shù)分別與軸、軸交于點、,若sin,則的值為()A. B. C. D.7.不透明袋子中有除顏色外完全相同的4個黑球和2個白球,從袋子中隨機摸出3個球,下列事件是必然事件的是().A.3個都是黑球 B.2個黑球1個白球C.2個白球1個黑球 D.至少有1個黑球8.在同一坐標系中,反比例函數(shù)y=與二次函數(shù)y=kx2+k(k≠0)的圖象可能為()A. B.C. D.9.中,,,,的值為()A. B. C. D.210.下列說法正確的是()A.等弧所對的圓心角相等 B.平分弦的直徑垂直于這條弦C.經(jīng)過三點可以作一個圓 D.相等的圓心角所對的弧相等二、填空題(每小題3分,共24分)11.如圖,將繞點逆時針旋轉(zhuǎn),得到,這時點恰好在同一直線上,則的度數(shù)為______.12.如圖,在Rt△ABC中,∠C=90°,邊AB的垂直平分線分別交邊BC、AB于點D、E如果BC=8,,那么BD=_____.13.一只不透明的袋子中裝有紅球和白球共個,這些球除了顏色外都相同,校課外學習小組做摸球試驗,將球攪勻后任意摸出一個球,記下顏色后放回、攪勻,通過多次重復試驗,算得摸到紅球的頻率是,則袋中有__________.14.如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點O順時針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點E逆時針旋轉(zhuǎn)90°后得線段ED,分別以O,E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____.15.二次函數(shù)的頂點坐標是__________.16.若正數(shù)a是一元二次方程x2﹣5x+m=0的一個根,﹣a是一元二次方程x2+5x﹣m=0的一個根,則a的值是______.17.當x_____時,|x﹣2|=2﹣x.18.三角形的三條邊分別為5,5,6,則該三角形的內(nèi)切圓半徑為__________三、解答題(共66分)19.(10分)如圖,已知四邊形ABCD內(nèi)接于圓,對角線AC與BD相交于點E,F(xiàn)在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.(1)若∠DFC=40o,求∠CBF的度數(shù).(2)求證:CD⊥DF.20.(6分)(1)計算:cos60°﹣tan30°+tan60°﹣2sin245°;(2)解方程:2(x﹣3)2=x(x﹣3).21.(6分)如圖,在直角三角形ABC中,∠C=90°,點D是AC邊上一點,過點D作DE⊥BD,交AB于點E,若BD=10,tan∠ABD=,cos∠DBC=,求DC和AB的長.22.(8分)如圖1,拋物線與x軸相交于點A、點B,與y軸交于點C(0,3),對稱軸為直線x=1,交x軸于點D,頂點為點E.(1)求該拋物線的解析式;(2)連接AC,CE,AE,求△ACE的面積;(3)如圖2,點F在y軸上,且OF=,點N是拋物線在第一象限內(nèi)一動點,且在拋物線對稱軸右側(cè),連接ON交對稱軸于點G,連接GF,若GF平分∠OGE,求點N的坐標.23.(8分)伴隨經(jīng)濟發(fā)展和生活水平的日益提高,水果超市如雨后春筍般興起.萬松園一水果超市從外地購進一種水果,其進貨成本是每噸0.4萬元,根據(jù)市場調(diào)查,這種水果在市場上的銷售量y(噸)與銷售價x(萬元)之間的函數(shù)關(guān)系為y=-x+2.6(1)當每噸銷售價為多少萬元時,銷售利潤為0.96萬元?(2)當每噸銷售價為多少萬元時利潤最大?并求出最大利潤是多少?24.(8分)如圖,在△ABC中,AD是角平分錢,點E在AC上,且∠EAD=∠ADE.(1)求證:△DCE∽△BCA;(2)若AB=3,AC=1.求DE的長.25.(10分)如圖,反比例函數(shù)y1=與一次函數(shù)y2=ax+b的圖象交于點A(﹣2,5)和點B(n,l).(1)求反比例函數(shù)和一次函數(shù)的表達式;(2)請結(jié)合圖象直接寫出當y1≥y2時自變量x的取值范圍;(3)點P是y軸上的一個動點,若S△APB=8,求點P的坐標.26.(10分)為了測量山坡上的電線桿的高度,數(shù)學興趣小組帶上測角器和皮尺來到山腳下,他們在處測得信號塔頂端的仰角是,信號塔底端點的仰角為,沿水平地面向前走100米到處,測得信號塔頂端的仰角是,求信號塔的高度.(結(jié)果保留整數(shù))
參考答案一、選擇題(每小題3分,共30分)1、D【分析】將點的坐標代入反比例函數(shù)解析式中可求k的值.【題目詳解】∵反比例函數(shù)的圖象經(jīng)過點(﹣5,3),∴k+1=﹣5×3=﹣15,∴k=﹣16故選:D.【題目點撥】本題考查了反比例函數(shù)圖象上點的坐標特征,掌握圖象上的點的坐標滿足解析式是本題的關(guān)鍵.2、C【分析】設AB邊為x,則BC邊為(12-2x),根據(jù)矩形的面積可列二次函數(shù),再求出最大值即可.【題目詳解】設AB邊為x,則BC邊為(12-2x),則矩形ABCD的面積y=x(12-2x)=-2(x-3)2+18,∴當x=3時,面積最大為18,選C.【題目點撥】此題主要考察二次函數(shù)的應用,正確列出函數(shù)是解題的關(guān)鍵.3、A【分析】根據(jù)中心對稱圖形和軸對稱圖形的概念對各選項分析判斷即可得解.【題目詳解】解:A、是軸對稱圖形,也是中心對稱圖形,故本選項符合題意;B、不是軸對稱圖形,不是中心對稱圖形,故本選項不合題意;C、是軸對稱圖形,不是中心對稱圖形,故本選項不合題意;D、是軸對稱圖形,不是中心對稱圖形,故本選項不合題意.故答案為A.【題目點撥】本題考查了中心對稱圖形和軸對稱圖形的概念,理解這兩個概念是解答本題的關(guān)鍵.4、C【分析】畫圖可判斷①;將②轉(zhuǎn)化為算式的形式,求解判斷;③是用頻率估計概率的考查;④中配成平方的形式分析可得.【題目詳解】如下圖,∠1=∠1,∠1+∠3=180°,即兩邊都平行的角,可能相等,也可能互補,①錯誤;②可用算式表示為:,正確;實驗次數(shù)越多,則頻率越接近概率,③正確;∵≥0,≥0∴≥1,④正確故選:C【題目點撥】本題考查平行的性質(zhì)、有理數(shù)的計算、頻率與概率的關(guān)系、利用配方法求最值問題,注意②中,我們要將題干文字轉(zhuǎn)化為算式分析.5、D【解題分析】如圖,作輔助線;首先證明△BEO∽△OFA,,得到;設B為(a,),A為(b,),得到OE=-a,EB=,OF=b,AF=,進而得到,此為解決問題的關(guān)鍵性結(jié)論;運用三角函數(shù)的定義證明知tan∠OAB=為定值,即可解決問題.【題目詳解】解:分別過B和A作BE⊥x軸于點E,AF⊥x軸于點F,則△BEO∽△OFA,∴,設點B為(a,),A為(b,),則OE=-a,EB=,OF=b,AF=,可代入比例式求得,即,根據(jù)勾股定理可得:OB=,OA=,∴tan∠OAB===∴∠OAB大小是一個定值,因此∠OAB的大小保持不變.故選D【題目點撥】該題主要考查了反比例函數(shù)圖象上點的坐標特征、相似三角形的判定等知識點及其應用問題;解題的方法是作輔助線,將分散的條件集中;解題的關(guān)鍵是靈活運用相似三角形的判定等知識點來分析、判斷、推理或解答.6、D【分析】由解析式求得圖象與x軸、y軸的交點坐標,再由sin,求出AB,利用勾股定理求出OA=,由此即可利用OA=1求出k的值.【題目詳解】∵,∴當x=0時,y=-k,當y=0時,x=1,∴B(0,-k),A(1,0),∵sin,∴,∵OB=-k,∴AB=,∴OA==∴=1,∴k=,故選:D.【題目點撥】此題考查一次函數(shù)的性質(zhì),勾股定理,三角函數(shù),解題中綜合運用,題中求出AB,利用勾股定理求得OA的長是解題的關(guān)鍵.7、D【分析】根據(jù)白球兩個,摸出三個球必然有一個黑球.【題目詳解】解:A袋子中裝有4個黑球和2個白球,摸出的三個球中可能為兩個白球一個黑球,所以A不是必然事件;B.C.袋子中有4個黑球,有可能摸到的全部是黑球,B、C有可能不發(fā)生,所以B、C不是必然事件;D.白球只有兩個,如果摸到三個球不可能都是白梂,因此至少有一個是黑球,D正確.故選D.【題目點撥】本題考查隨機事件,解題關(guān)鍵在于根據(jù)題意對選項進行判斷即可.8、D【解題分析】根據(jù)k>0,k<0,結(jié)合兩個函數(shù)的圖象及其性質(zhì)分類討論.【題目詳解】分兩種情況討論:①當k<0時,反比例函數(shù)y=,在二、四象限,而二次函數(shù)y=kx2+k開口向上下與y軸交點在原點下方,D符合;②當k>0時,反比例函數(shù)y=,在一、三象限,而二次函數(shù)y=kx2+k開口向上,與y軸交點在原點上方,都不符.分析可得:它們在同一直角坐標系中的圖象大致是D.故選D.【題目點撥】本題主要考查二次函數(shù)、反比例函數(shù)的圖象特點.9、C【分析】根據(jù)勾股定理求出斜邊AB的值,在利用余弦的定義直接計算即可.【題目詳解】在Rt△ACB中,∠C=90°,AC=1,BC=2,∴AB=,∴==,故選:C.【題目點撥】本題主要考查銳角三角函數(shù)的定義,解決此類題時,要注意前提條件是在直角三角形中,此外還有熟記三角函數(shù)是定義.10、A【分析】根據(jù)圓心角、弧、弦的關(guān)系、確定圓的條件、垂徑定理的知識進行判斷即可.【題目詳解】等弧所對的圓心角相等,A正確;平分弦的直徑垂直于這條弦(此弦不能是直徑),B錯誤;經(jīng)過不在同一直線上的三點可以作一個圓,C錯誤;相等的圓心角所對的弧不一定相等,故選A.【題目點撥】此題考查圓心角、弧、弦的關(guān)系,解題關(guān)鍵在于掌握以及圓心角、弧、弦的關(guān)系二、填空題(每小題3分,共24分)11、20°【解題分析】先判斷出∠BAD=140°,AD=AB,再判斷出△BAD是等腰三角形,最后用三角形的內(nèi)角和定理即可得出結(jié)論.【題目詳解】∵將△ABC繞點A逆時針旋轉(zhuǎn)140°,得到△ADE,∴∠BAD=140°,AD=AB,∵點B,C,D恰好在同一直線上,∴△BAD是頂角為140°的等腰三角形,∴∠B=∠BDA,∴∠B=(180°?∠BAD)=20°,故答案為:20°【題目點撥】此題考查旋轉(zhuǎn)的性質(zhì),等腰三角形的判定與性質(zhì),三角形內(nèi)角和定理,解題關(guān)鍵在于判斷出△BAD是等腰三角形12、【解題分析】:∵在RT△ABC中,∠C=90°,BC=8,tanA=,∴AC=,∴AB=,∵邊AB的垂直平分線交邊AB于點E,∴BE=,∵在RT△BDE中,∠BED=90°,∴cosB=,∴BD=,故答案為.點睛:本題考查了解直角三角形,線段平分線的性質(zhì),掌握直角三角形中邊角之間的關(guān)系是解答本題的關(guān)鍵.13、1【分析】在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關(guān)系入手,列出方程求解.【題目詳解】設袋中有x個紅球.
由題意可得:,解得:,
故答案為:1.【題目點撥】本題主要考查了利用頻率估計概率,本題利用了用大量試驗得到的頻率可以估計事件的概率.關(guān)鍵是根據(jù)紅球的頻率得到相應的等量關(guān)系.14、8﹣π【解題分析】分析:如下圖,過點D作DH⊥AE于點H,由此可得∠DHE=∠AOB=90°,由旋轉(zhuǎn)的性質(zhì)易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,結(jié)合∠ABO+∠BAO=90°可得∠BAO=∠DEH,從而可證得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的長,即可由S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF即可求得陰影部分的面積.詳解:如下圖,過點D作DH⊥AE于點H,∴∠DHE=∠AOB=90°,∵OA=3,OB=2,∴AB=,由旋轉(zhuǎn)的性質(zhì)結(jié)合已知條件易得:DE=EF=AB=,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,又∵∠ABO+∠BAO=90°,∴∠BAO=∠DEH,∴△DEH≌△BAO,∴DH=BO=2,∴S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF==.故答案為:.點睛:作出如圖所示的輔助線,利用旋轉(zhuǎn)的性質(zhì)證得△DEH≌△BAO,由此得到DH=BO=2,從而將陰影部分的面積轉(zhuǎn)化為:S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF來計算是解答本題的關(guān)鍵.15、(2,1)【分析】將解析式化為頂點式即可頂點答案.【題目詳解】∵,∴二次函數(shù)的頂點坐標是(2,1),故答案為:(2,1).【題目點撥】此題考查二次函數(shù)的一般式化為頂點式的方法,頂點式解析式中各字母的意義,正確轉(zhuǎn)化解析式的形式是解題的關(guān)鍵.16、1【解題分析】試題解析:∵a是一元二次方程x2-1x+m=0的一個根,-a是一元二次方程x2+1x-m=0的一個根,∴a2-1a+m=0①,a2-1a-m=0②,①+②,得2(a2-1a)=0,∵a>0,∴a=1.考點:一元二次方程的解.17、≤2【分析】由題意可知x﹣2為負數(shù)或0,進而解出不等式即可得出答案.【題目詳解】解:由|x﹣2|=2﹣x,可得,解得:.故答案為:≤2.【題目點撥】本題考查絕對值性質(zhì)和解不等式,熟練掌握絕對值性質(zhì)和解不等式相關(guān)知識是解題的關(guān)鍵.18、1.5【分析】由等腰三角形的性質(zhì)和勾股定理,求出CE的長度,然后利用面積相等列出等式,即可求出內(nèi)切圓的半徑.【題目詳解】解:如圖,點O為△ABC的內(nèi)心,設OD=OE=OF=r,∵AC=BC=5,CE平分∠ACB,∴CE⊥AB,AE=BE=,在Rt△ACE中,由勾股定理,得,由三角形的面積相等,則,∴,∴,∴;故答案為:1.5;【題目點撥】本題考查的是三角形的內(nèi)切圓與內(nèi)心,三線合一定理,勾股定理,掌握三角形的面積公式進行計算是解題的關(guān)鍵.三、解答題(共66分)19、(1)50o;(2)見解析【分析】(1)根據(jù)圓周角定理及三角形的外角,等腰三角形的知識進行角度的換算即可得;(2)根據(jù)圓的內(nèi)接四邊形對角互補的性質(zhì)進行角度計算即可證明.【題目詳解】解:(1)∵∠BAD=∠BFC,∠BAD=∠BAC+∠CAD,∠BFC=∠BAC+∠ABF,∴∠CAD=∠ABF又∵∠CAD=∠CBD,∴∠ABF=∠CBD∴∠ABD=∠FBC,又,,,,.(2)令,則,∵四邊形是圓的內(nèi)接四邊形,∴,即,又∵,∴,∴∴∴,即.【題目點撥】本題主要考查圓的性質(zhì)與三角形性質(zhì)綜合問題,難度適中,解題的關(guān)鍵是能夠靈活運用圓及三角形的性質(zhì)進行角度的運算.20、(1);(2)x1=3,x2=1.【分析】(1)把特殊角的三角函數(shù)值代入,然后進行計算即可;(2)移項后用分解因式法求解.【題目詳解】解:(1)原式=;(2)移項,得:2(x﹣3)2﹣x(x﹣3)=0,即(x﹣3)(2x﹣1﹣x)=0,∴x﹣3=0或x﹣1=0,解得:x1=3,x2=1.【題目點撥】本題考查了特殊角的三角函數(shù)值的有關(guān)運算和一元二次方程的解法,屬于基礎題型,熟練掌握基本知識是解題的關(guān)鍵.21、DC=6;AB=,【分析】如圖,作EH⊥AC于H.解直角三角形分別求出DE,EB,BC,CD,再利用相似三角形的性質(zhì)求出AE即可解決問題.【題目詳解】如圖,作EH⊥AC于H.∵DE⊥BD,∴∠BDE=90°,∵tan∠ABD==,BD=10,∴DE=5,BE===5,∵∠C=90°,cos∠DBC==,∴BC=8,CD===6,∵EH∥BC,∴△AEH∽△ABC,∴=,∴=,∴AE=,∴AB=AE+BE=+5=.【題目點撥】本題考查解直角三角形的應用,相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識22、(1)y=-x2+2x+3;(2)1;(3)點N的坐標為:(,).【分析】(1)由點C的坐標,求出c,再由對稱軸為x=1,求出b,即可得出結(jié)論;(2)先求出點A,E坐標,進而求出直線AE與y軸的交點坐標,最后用三角形面積公式計算即可得出結(jié)論;(3)先利用角平分線定理求出FQ=1,進而利用勾股定理求出OQ=1=FQ,進而求出∠BON=45°,求出直線ON的解析式,最后聯(lián)立拋物線解析式求解,即可得出結(jié)論.【題目詳解】解:(1)∵拋物線y=-x2+bx+c與y軸交于點C(0,3),令x=0,則c=3,∵對稱軸為直線x=1,∴,∴b=2,∴拋物線的解析式為y=-x2+2x+3;(2)如圖1,AE與y軸的交點記作H,由(1)知,拋物線的解析式為y=-x2+2x+3,令y=0,則-x2+2x+3=0,∴x=-1或x=3,∴A(-1,0),當x=1時,y=-1+2+3=4,∴E(1,4),∴直線AE的解析式為y=2x+2,∴H(0,2),∴CH=3-2=1,∴S△ACE=CH?|xE-xA|=×1×2=1;(3)如圖2,過點F作FP⊥DE于P,則FP=1,過點F作FQ⊥ON于Q,∵GF平分∠OGE,∴FQ=FP=1,在Rt△FQO中,OF=,根據(jù)勾股定理得,OQ=,∴OQ=FQ,∴∠FOQ=45°,∴∠BON=90°-45°=45°,過點Q作QM⊥OB于M,OM=QM∴ON的解析式為y=x①,∵點N在拋物線y=-x2+2x+3②上,聯(lián)立①②,則,解得:或(由于點N在對稱軸x=1右側(cè),所以舍去),∴點N的坐標為:(,).【題目點撥】此題是二次函數(shù)綜合題,主要考查了待定系數(shù)法,三角形面積的求法,角平分線定理,勾股定理,直線與拋物線的交點坐標的求法,求出直線ON的解析式是解本題的關(guān)鍵.23、(1)當每噸銷售價為1萬元或2萬元時,銷售利潤為
0.96萬元;(2)每噸銷售價為1.5萬元時,銷售利潤最大,最大利潤是1.21萬元.【分析】(1)由銷售量y=-x+2.6,而每噸的利潤為x-0.4,所以w=y(x-0.4);
(2)解出(2)中的函數(shù)是一個二次函數(shù),對于二次函數(shù)取最值可使用配方法.【題目詳解】解:(1)設銷售利潤為w萬元,由題意可得:
w=(x-0.4)y=(x-0.4)(-x+2.6)=-x2+3x-1.04,
令w=0.96,則-x2+3x-1.04=0.96
解得x1=1,x2=2,
答:當每噸銷售價為1萬元或2萬元時,銷售利潤為
0.96萬元;
(2)w=-x2+3x-1.04=-(x-1.5)2+1.21,
當x=1.5時,w最大=1.21,
∴每噸銷售價為1.5萬元時,銷售利潤最大,最大利潤是1.21萬元.【題目點撥】本題考查了一元二次方程的應用和二次函數(shù)的應用,解題的關(guān)鍵是掌握題中的數(shù)量關(guān)系,列出相應方程和函數(shù)表達式.24、(1)、證明過程見解析;(2)、【解題分析】試題分析:(1)已知AD平分∠BAC,可得∠EAD=∠ADE,再由∠EAD=∠ADE,可得∠BAD=∠ADE,即可得AB∥DE,從而得△DCE∽△BCA;(2)已知∠EAD=∠ADE,由三角形的性質(zhì)可得AE=DE,設DE=x,所以CE=AC﹣AE=AC﹣DE=1﹣x,由(1)可知△DCE∽△BCA,根據(jù)相似三角形的對應邊成比例可得x:3=(1﹣x):1,解得x的值,即可得DE的長.試題解析:(1)證明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠EAD=∠ADE,∴∠BAD=∠ADE,∴AB∥DE,∴△DCE∽△BCA;(2)解:∵∠EAD=∠ADE,∴AE=DE,設DE=x,∴CE=AC﹣AE=AC﹣DE=1﹣x,∵△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 租房合同協(xié)議書格式英文版英文版示例
- 文化墻建設招標文件范例
- 木制品原材料購銷合同
- 塑料袋購銷合同條款
- 特許加盟授權(quán)協(xié)議
- 交通道路工程設計勘察招標說明會
- 抹灰工程勞務合作
- 無房產(chǎn)證房屋交易合同
- 房屋居間合同買賣模板
- 家具購銷合同樣式設計
- 部編 2024版歷史七年級上冊期末復習(全冊)教案
- 工程管理畢業(yè)論文范文(三篇)
- 新能源發(fā)電技術(shù) 電子課件 2.5 可控核聚變及其未來利用方式
- 五年級上冊英語單詞表外研
- 科室護理品牌
- Module 9 Unit2教學設計2024-2025學年外研版英語九年級上冊
- 有趣的機械結(jié)構(gòu)智慧樹知到答案2024年青島濱海學院
- 濟柴190系列柴油機使用維護手冊
- 2024年軍隊文職統(tǒng)一考試《專業(yè)科目》管理學真題及答案解析
- 2024年網(wǎng)格員述職報告
- 部編版語文三年級上冊第五單元大單元整體教學設計
評論
0/150
提交評論