![2024屆重慶市渝北八中學(xué)數(shù)學(xué)九年級第一學(xué)期期末達標檢測模擬試題含解析_第1頁](http://file4.renrendoc.com/view/7d56537ac0ef5cf4b751623912e3d897/7d56537ac0ef5cf4b751623912e3d8971.gif)
![2024屆重慶市渝北八中學(xué)數(shù)學(xué)九年級第一學(xué)期期末達標檢測模擬試題含解析_第2頁](http://file4.renrendoc.com/view/7d56537ac0ef5cf4b751623912e3d897/7d56537ac0ef5cf4b751623912e3d8972.gif)
![2024屆重慶市渝北八中學(xué)數(shù)學(xué)九年級第一學(xué)期期末達標檢測模擬試題含解析_第3頁](http://file4.renrendoc.com/view/7d56537ac0ef5cf4b751623912e3d897/7d56537ac0ef5cf4b751623912e3d8973.gif)
![2024屆重慶市渝北八中學(xué)數(shù)學(xué)九年級第一學(xué)期期末達標檢測模擬試題含解析_第4頁](http://file4.renrendoc.com/view/7d56537ac0ef5cf4b751623912e3d897/7d56537ac0ef5cf4b751623912e3d8974.gif)
![2024屆重慶市渝北八中學(xué)數(shù)學(xué)九年級第一學(xué)期期末達標檢測模擬試題含解析_第5頁](http://file4.renrendoc.com/view/7d56537ac0ef5cf4b751623912e3d897/7d56537ac0ef5cf4b751623912e3d8975.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆重慶市渝北八中學(xué)數(shù)學(xué)九年級第一學(xué)期期末達標檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖,在△ABC中,點D是BC的中點,點E是AC的中點,若DE=3,則AB等于()A.4 B.5 C.5.5 D.62.已知如圖,在正方形ABCD中,AD=4,E,F(xiàn)分別是CD,BC上的一點,且∠EAF=45°,EC=1,將△ADE繞點A沿順時針方向旋轉(zhuǎn)90°后與△ABG重合,連接EF,過點B作BM∥AG,交AF于點M,則以下結(jié)論:①DE+BF=EF,②BF=,③AF=,④S△MEF=中正確的是A.①②③ B.②③④ C.①③④ D.①②④3.如圖,已知,分別為正方形的邊,的中點,與交于點,為的中點,則下列結(jié)論:①,②,③,④.其中正確結(jié)論的有()A.個 B.個 C.個 D.個4.如圖,已知,,,的長為()A.4 B.6 C.8 D.105.如圖,在由邊長為1的小正方形組成的網(wǎng)格中,點,,,都在格點上,點在的延長線上,以為圓心,為半徑畫弧,交的延長線于點,且弧經(jīng)過點,則扇形的面積為()A. B. C. D.6.若2sinA=,則銳角A的度數(shù)為()A.30° B.45° C.60° D.75°7.下列說法中,不正確的個數(shù)是()①直徑是弦;②經(jīng)過圓內(nèi)一定點可以作無數(shù)條直徑;③平分弦的直徑垂直于弦;④過三點可以作一個圓;⑤過圓心且垂直于切線的直線必過切點.()A.1個 B.2個 C.3個 D.4個8.下列四幅圖的質(zhì)地大小、背面圖案都一樣,把它們充分洗勻后翻放在桌面上,則從中任意抽取一張,抽到的圖案是中心對稱圖形的概率是()A. B. C. D.19.如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點M是AB上的一點,點N是CB上的一點,,當∠CAN與△CMB中的一個角相等時,則BM的值為()A.3或4 B.或4 C.或6 D.4或610.已知y關(guān)于x的函數(shù)表達式是,下列結(jié)論不正確的是()A.若,函數(shù)的最大值是5B.若,當時,y隨x的增大而增大C.無論a為何值時,函數(shù)圖象一定經(jīng)過點D.無論a為何值時,函數(shù)圖象與x軸都有兩個交點二、填空題(每小題3分,共24分)11.拋物線y=(x-1)2-7的對稱軸為直線_________.12.,兩點都在二次函數(shù)的圖像上,則的大小關(guān)系是____________.13.如圖,若一個半徑為1的圓形紙片在邊長為6的等邊三角形內(nèi)任意運動,則在該等邊三角形內(nèi),這個圓形紙片能接觸到的最大面積為_____.14.一元二次方程的解是__.15.從地面豎直向上拋出一小球,小球的高度h(米)與小球運動時間t(秒)的關(guān)系式是h=30t﹣5t2,小球運動中的最大高度是_____米.16.某同學(xué)用描點法y=ax2+bx+c的圖象時,列出了表:x…﹣2﹣1012…y…﹣11﹣21﹣2﹣5…由于粗心,他算錯了其中一個y值,則這個錯誤的y值是_______.17.一次安全知識測驗中,學(xué)生得分均為整數(shù),滿分10分,這次測驗中甲、乙兩組學(xué)生人數(shù)都為6人,成績?nèi)缦拢杭祝?,9,10,1,5,9;乙:9,6,1,10,7,1.(1)請補充完整下面的成績統(tǒng)計分析表:平均分方差眾數(shù)中位數(shù)甲組19乙組11(2)甲組學(xué)生說他們的眾數(shù)高于乙組,所以他們的成績好于乙組,但乙組學(xué)生不同意甲組學(xué)生的說法,認為他們組的成績要好于甲組,請你給出一條支持乙組學(xué)生觀點的理由_____________________________.18.設(shè)、是關(guān)于的方程的兩個根,則__________.三、解答題(共66分)19.(10分)先化簡,再求值:,其中a=2.20.(6分)2019年6月,總書記對垃圾分類工作作出重要指示.實行垃圾分類,關(guān)系廣大人民群眾生活環(huán)境,關(guān)系節(jié)約使用資源,也是社會文明水平的一個重要體現(xiàn).興國縣某校為培養(yǎng)學(xué)生垃圾分類的好習(xí)慣,在校園內(nèi)擺放了幾組垃圾桶,每組4個,分別是“可回收物”、“有害垃圾”、“廚余垃圾”和“其它垃圾”(如下圖,分別記為A、B、C、D).小超同學(xué)由于上課沒有聽清楚老師的講解,課后也沒有認真學(xué)習(xí)教室里張貼的“垃圾分類常識”,對垃圾分類標準不是很清楚,于是先后將一個礦泉水瓶(簡記為水瓶)和一張擦了汗的面巾紙(簡記為紙巾)隨機扔進了兩個不同的垃圾桶。說明:礦泉水瓶屬于“可回收物”,擦了汗的面巾紙屬于“其它垃圾”.(1)小超將礦泉水瓶隨機扔進4個垃圾桶中的某一個桶,恰好分類正確的概率是_____;(2)小超先后將一個礦泉水瓶和一張擦了汗的面巾紙隨機扔進了兩個不同的垃圾桶,請用畫樹狀圖或列表的方法,求出兩個垃圾都分類錯誤的概率.21.(6分)綜合與實踐問題背景:綜合與實踐課上,同學(xué)們以兩個全等的三角形紙片為操作對象,進行相一次相關(guān)問題的研究.下面是創(chuàng)新小組在操作過程中研究的問題,如圖一,△ABC≌△DEF,其中∠ACB=90°,BC=2,∠A=30°.操作與發(fā)現(xiàn):(1)如圖二,創(chuàng)新小組將兩張三角形紙片按如圖示的方式放置,四邊形ACBF的形狀是,CF=;(2)創(chuàng)新小組在圖二的基礎(chǔ)上,將△DEF紙片沿AB方向平移至圖三的位置,其中點E與AB的中點重合.連接CE,BF.四邊形BCEF的形狀是,CF=.操作與探究:(3)創(chuàng)新小組在圖三的基礎(chǔ)上又進行了探究,將△DEF紙片繞點E逆時針旋轉(zhuǎn)至DE與BC平行的位置,如圖四所示,連接AF,BF.經(jīng)過觀察和推理后發(fā)現(xiàn)四邊形ACBF也是矩形,請你證明這個結(jié)論.22.(8分)小明按照列表、描點、連線的過程畫二次函數(shù)的圖象,下表與下圖是他所完成的部分表格與圖象,求該二次函數(shù)的解析式,并補全表格與圖象.23.(8分)李老師將1個黑球和若干個白球放入一個不透明的口袋中并攪勻,讓學(xué)生進行摸球試驗,每次摸出一個球(放回),下表是活動進行中的一組統(tǒng)計數(shù)據(jù).摸球的次數(shù)n1001502005008001000摸到黑球的次數(shù)m233160130203251摸到黑球的頻率0.230.210.30_______________(1)補全上表中的有關(guān)數(shù)據(jù),根據(jù)上表數(shù)據(jù)估計從袋中摸出一個黑球的概率是______.(結(jié)果都保留小數(shù)點后兩位)(2)估算袋中白球的個數(shù)為________.(3)在(2)的條件下,若小強同學(xué)有放回地連續(xù)兩次摸球,用畫樹狀圖或列表的方法計算出兩次都摸出白球的概率.24.(8分)如圖,在中,,點是邊上的動點(不與重合),點在邊上,并且滿足.(1)求證:;(2)若的長為,請用含的代數(shù)式表示的長;(3)當(2)中的最短時,求的面積.25.(10分)如圖,△ABC是邊長為2的等邊三角形,點D與點B分別位于直線AC的兩側(cè),且AD=AC,聯(lián)結(jié)BD、CD,BD交直線AC于點E.(1)當∠CAD=90°時,求線段AE的長.(2)過點A作AH⊥CD,垂足為點H,直線AH交BD于點F,①當∠CAD<120°時,設(shè),(其中表示△BCE的面積,表示△AEF的面積),求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;②當時,請直接寫出線段AE的長.26.(10分)如圖,矩形ABCD中,∠ACB=30°,將一塊直角三角板的直角頂點P放在兩對角線AC,BD的交點處,以點P為旋轉(zhuǎn)中心轉(zhuǎn)動三角板,并保證三角板的兩直角邊分別于邊AB,BC所在的直線相交,交點分別為E,F(xiàn).(1)當PE⊥AB,PF⊥BC時,如圖1,則的值為;(2)現(xiàn)將三角板繞點P逆時針旋轉(zhuǎn)α(0°<α<60°)角,如圖2,求的值;(3)在(2)的基礎(chǔ)上繼續(xù)旋轉(zhuǎn),當60°<α<90°,且使AP:PC=1:2時,如圖3,的值是否變化?證明你的結(jié)論.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】由兩個中點連線得到DE是中位線,根據(jù)DE的長度即可得到AB的長度.【題目詳解】∵點D是BC的中點,點E是AC的中點,∴DE是△ABC的中位線,∴AB=2DE=6,故選:D.【題目點撥】此題考查三角形的中位線定理,三角形兩邊中點的連線是三角形的中位線,平行于三角形的第三邊,且等于第三邊的一半.2、D【分析】利用全等三角形的性質(zhì)條件勾股定理求出的長,再利用相似三角形的性質(zhì)求出△BMF的面積即可【題目詳解】解:∵AG=AE,∠FAE=∠FAG=45°,AF=AF,∴△AFE△AFG,∴EF=FG∵DE=BG∴EF=FG=BG+FB=DE+BF故①正確∵BC=CD=AD=4,EC=1∴DE=3,設(shè)BF=x,則EF=x+3,CF=4-x,在Rt△ECF中,(x+3)2=(4-x)2+12解得x=∴BF=,AF=故②正確,③錯誤,∵BM∥AG∴△FBM~△FGA∴∴S△MEF=,故④正確,故選D.【題目點撥】本題考查旋轉(zhuǎn)變換、正方形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考選擇題中的壓軸題3、B【分析】根據(jù)正方形的性質(zhì)可得,然后利用SAS即可證出,根據(jù)全等三角形的性質(zhì)可得:,根據(jù)直角三角形的性質(zhì)和三角形的內(nèi)角和,即可判斷①;根據(jù)中線的定義即可判斷②;設(shè)正方形的邊長為,根據(jù)相似三角形的判定證出,列出比例式,即可判斷③;過點作于,易證△AMN∽△AFB,列出比例式,利用勾股定理求出ME、MF和MB即可判斷④.【題目詳解】解:在正方形中,,,、分別為邊,的中點,,在和中,,,,,,故①正確;是的中線,,,故②錯誤;設(shè)正方形的邊長為,則,在中,,,,,,即,解得:,,,故③正確;如圖,過點作于,∴∴△AMN∽△AFB∴,即,解得,,根據(jù)勾股定理,,,,故④正確.綜上所述,正確的結(jié)論有①③④共3個故選:B.【題目點撥】此題考查的是正方形的性質(zhì)、全等三角形的判定及性質(zhì)、相似三角形的判定及性質(zhì)和勾股定理,掌握正方形的性質(zhì)、全等三角形的判定及性質(zhì)、相似三角形的判定及性質(zhì)和勾股定理是解決此題的關(guān)鍵.4、D【分析】根據(jù)平行線分線段成比例得到,即,可計算出.【題目詳解】解:,即,解得.故選D【題目點撥】本題主要考查平行線段分線段成比例定理,熟練掌握并靈活運用定理是解題的關(guān)系.5、B【分析】連接AC,根據(jù)網(wǎng)格的特點求出r=AC的長度,再得到扇形的圓心角度數(shù),根據(jù)扇形面積公式即可求解.【題目詳解】連接AC,則r=AC=扇形的圓心角度數(shù)為∠BAD=45°,∴扇形的面積==故選B.【題目點撥】此題主要考查扇形面積求解,解題的關(guān)鍵是熟知勾股定理及扇形面積公式.6、B【解題分析】等式兩邊除以2,根據(jù)特殊的銳角三角比值可確定∠A的度數(shù).【題目詳解】∵2sinA=,sinA=,∠A=45°,故選B.【題目點撥】本題主要考查了特殊角的三角函數(shù)值,熟記特殊角的三角函數(shù)值是解答關(guān)鍵.7、C【分析】①根據(jù)弦的定義即可判斷;
②根據(jù)圓的定義即可判斷;
③根據(jù)垂徑定理的推論:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧即可判斷;
④確定圓的條件:不在同一直線上的三點確定一個圓即可判斷;
⑤根據(jù)切線的性質(zhì):經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點即可判斷.【題目詳解】解:①直徑是特殊的弦.所以①正確,不符合題意;
②經(jīng)過圓心可以作無數(shù)條直徑.所以②不正確,符合題意;
③平分弦(不是直徑)的直徑垂直于弦.所以③不正確,符合題意;
④過不在同一條直線上的三點可以作一個圓.所以④不正確,符合題意;
⑤過圓心且垂直于切線的直線必過切點.所以⑤正確,不符合題意.
故選:C.【題目點撥】本題考查了切線的性質(zhì)、垂徑定理、確定圓的條件,解決本題的關(guān)鍵是掌握圓的相關(guān)定義和性質(zhì).8、C【分析】先判斷出幾個圖形中的中心對稱圖形,再根據(jù)概率公式解答即可.【題目詳解】解:由圖形可得出:第1,2,3個圖形都是中心對稱圖形,∴從中任意抽取一張,抽到的圖案是中心對稱圖形的概率是:.故選:C.【題目點撥】此題主要考查了概率計算公式,熟練掌握中心對稱圖形的定義和概率的計算公式是解題的關(guān)鍵.9、D【分析】分兩種情形:當時,,設(shè),,可得,解出值即可;當時,過點作,可得,得出,,則,證明,得出方程求解即可.【題目詳解】解:在Rt△ABC中,∠ACB=90°,AC=1,BC=8,∴,AB=10,,設(shè),,①當時,可得,,,,.②當時,如圖2中,過點作,可得,,,,,,,,,,,,.綜上所述,或1.故選:D.【題目點撥】本題考相似三角形的判定和性質(zhì),解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,學(xué)會添加常用輔助線,構(gòu)造相似三角形解決問題.10、D【分析】將a的值代入函數(shù)表達式,根據(jù)二次函數(shù)的圖象與性質(zhì)可判斷A、B,將x=1代入函數(shù)表達式可判斷C,當a=0時,y=-4x是一次函數(shù),與x軸只有一個交點,可判斷D錯誤.【題目詳解】當時,,∴當時,函數(shù)取得最大值5,故A正確;當時,,∴函數(shù)圖象開口向上,對稱軸為,∴當時,y隨x的增大而增大,故B正確;當x=1時,,∴無論a為何值,函數(shù)圖象一定經(jīng)過(1,-4),故C正確;當a=0時,y=-4x,此時函數(shù)為一次函數(shù),與x軸只有一個交點,故D錯誤;故選D.【題目點撥】本題考查了二次函數(shù)的圖象與性質(zhì),以及一次函數(shù)與x軸的交點問題,熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、x=1【分析】根據(jù)拋物線y=a(x-h)2+k的對稱軸是x=h即可確定所以拋物線y=(x-1)2-7的對稱軸.【題目詳解】解:∵y=(x-1)2-7
∴對稱軸是x=1
故填空答案:x=1.【題目點撥】本題主要考查了二次函數(shù)的性質(zhì),熟記二次函數(shù)的對稱軸,頂點坐標是解答此題的關(guān)鍵.12、>【分析】根據(jù)二次函數(shù)的性質(zhì),可以判斷y1,y2的大小關(guān)系,本題得以解決.【題目詳解】∵二次函數(shù),∴當x<0時,y隨x的增大而增大,∵點在二次函數(shù)的圖象上,∵-1>-2,∴>,故答案為:>.【題目點撥】本題考查二次函數(shù)圖象上點的坐標特征,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.13、6+π.【分析】根據(jù)直角三角形的面積和扇形面積公式先求出圓形紙片不能接觸到的面積,再用等邊三角形的面積去減即可得能接觸到的最大面積.【題目詳解】解:如圖,當圓形紙片運動到與∠A的兩邊相切的位置時,過圓形紙片的圓心O作兩邊的垂線,垂足分別為D,E,連接AO,則Rt△ADO中,∠OAD=30°,OD=1,AD=,∴S△ADO=OD?AD=,∴S四邊形ADOE=2S△ADO=,∵∠DOE=120°,∴S扇形DOE=,∴紙片不能接觸到的部分面積為:3(﹣)=3﹣π∵S△ABC=×6×3=9∴紙片能接觸到的最大面積為:9﹣3+π=6+π.故答案為6+π.【題目點撥】此題主要考查圓的綜合運用,解題的關(guān)鍵是熟知等邊三角形的性質(zhì)、扇形面積公式.14、x1=1,x2=﹣1.【分析】先移項,在兩邊開方即可得出答案.【題目詳解】∵∴=9,∴x=±1,即x1=1,x2=﹣1,故答案為x1=1,x2=﹣1.【題目點撥】本題考查了解一元二次方程-直接開平方法,熟練掌握該方法是本題解題的關(guān)鍵.15、1【分析】首先理解題意,先把實際問題轉(zhuǎn)化成數(shù)學(xué)問題后,知道解此題就是求出h=30t﹣5t2的頂點坐標即可.【題目詳解】解:h=﹣5t2+30t=﹣5(t2﹣6t+9)+1=﹣5(t﹣3)2+1,∵a=﹣5<0,∴圖象的開口向下,有最大值,當t=3時,h最大值=1.故答案為:1.【題目點撥】本題考查了二次函數(shù)的應(yīng)用,解此題的關(guān)鍵是把實際問題轉(zhuǎn)化成數(shù)學(xué)問題,利用二次函數(shù)的性質(zhì)就能求出結(jié)果.16、﹣1.【解題分析】根據(jù)關(guān)于對稱軸對稱的自變量對應(yīng)的函數(shù)值相等,可得答案.解:由函數(shù)圖象關(guān)于對稱軸對稱,得(﹣1,﹣2),(0,1),(1,2)在函數(shù)圖象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函數(shù)解析式,得,解得,,函數(shù)解析式為y=﹣3x2+1x=2時y=﹣11,故答案為﹣1.“點睛”本題考查了二次函數(shù)圖象,利用函數(shù)圖象關(guān)于對稱軸對稱是解題關(guān)鍵.17、(1),1.5,1;(2)兩隊的平均分相同,但乙組的方差小于甲組方差,所以乙組成績更穩(wěn)定.【分析】(1)根據(jù)方差、平均數(shù)的計算公式求出甲組方差和乙組平均數(shù),根據(jù)中位數(shù)的定義,取出甲組中位數(shù);(2)根據(jù)(1)中表格數(shù)據(jù),分別從反應(yīng)數(shù)據(jù)集中程度的中位數(shù)和平均分及反應(yīng)數(shù)據(jù)波動程度的方差比較甲、乙兩組,由此找出乙組優(yōu)于甲組的一條理由.【題目詳解】(1)甲組方差:甲組數(shù)據(jù)由小到大排列為:5,7,1,9,9,10故甲組中位數(shù):(1+9)÷2=1.5乙組平均分:(9+6+1+10+7+1)÷6=1填表如下:平均分方差眾數(shù)中位數(shù)甲組191.5乙組111(2)兩隊的平均分相同,但乙組的方差小于甲組,所以乙組成績更穩(wěn)定.故答案為:,1.5,1;兩隊的平均分相同,但乙組的方差小于甲組方差,所以乙組成績更穩(wěn)定.【題目點撥】本題考查數(shù)據(jù)分析,熟練掌握反應(yīng)數(shù)據(jù)集中趨勢的中位數(shù)、眾數(shù)和平均數(shù)以及反應(yīng)數(shù)據(jù)波動程度的方差的計算公式和定義是解題關(guān)鍵.18、1【分析】根據(jù)根與系數(shù)的關(guān)系確定和,然后代入計算即可.【題目詳解】解:∵∴=-3,=-5∴-3-(-5)=1故答案為1.【題目點撥】本題主要考查了根與系數(shù)的關(guān)系,牢記對于(a≠0),則有:,是解答本題的關(guān)鍵.三、解答題(共66分)19、,2【分析】先根據(jù)分式的運算順序和運算法則化簡原式,再將a=2代入計算即可;【題目詳解】解:原式=;當a=2時,原式值=;【題目點撥】本題主要考查了分式的化簡求值,掌握分式的運算順序和運算法則是解題的關(guān)鍵.20、(1);(2)【分析】(1)根據(jù)概率公式即可得答案;(2)畫出樹狀圖,可得出總情況數(shù)和兩個垃圾都分類錯誤的情況數(shù),利用概率公式即可得答案.【題目詳解】(1)∵共有4組,每組4個桶,∴共有16個桶,∵分類正確的有4個桶,∴分類正確的概率為=.(2)畫樹狀圖得:∵共有12種等可能的結(jié)果,兩個垃圾都分類錯誤的情況有7種:BA,BC,CA,CB,DA,DB,DC∴P(兩個垃圾都分類錯誤)=.【題目點撥】本題考查利用列表法或樹狀圖法求概率,概率=所求情況數(shù)與總情況數(shù)的比;熟練掌握概率公式是解題關(guān)鍵.21、(1)矩形,4;(2)菱形,;(3)詳見解析.【分析】(1)由題意及圖形可直接解答;(2)根據(jù)題意及圖形,結(jié)合直角三角形的性質(zhì)定理可直接得到答案;(3)根據(jù)旋轉(zhuǎn)的性質(zhì)及題意易得,然后得到四邊形ACBF為平行四邊形,最后問題得證.【題目詳解】(1)如圖所示:△ABC≌△DEF,其中∠ACB=90°,BC=2,∠A=30°,,,四邊形ACBF是矩形,AB=4,AB=CF=4;故答案為:矩形,4;(2)如圖所示:△ABC≌△DEF,其中∠ACB=90°,BC=2,∠A=30°,,,四邊形ECBF是平行四邊形,點E與AB的中點重合,CE=BE,是等邊三角形,EC=BC,四邊形ECBF是菱形,CF與EB互相垂直且平分,,,故答案為:菱形,;(3)證明:如圖所示:∵∵∴∴∵∵∴為等邊三角形∴∴∵∴四邊形ACBF為平行四邊形∵∴四邊形ACBF為矩形.【題目點撥】本題主要考查特殊平行四邊形的性質(zhì)及判定、全等三角形的性質(zhì),關(guān)鍵是由題意圖形的變化及三角形全等的性質(zhì)得到線段的等量關(guān)系,然后結(jié)合特殊平行四邊形的判定方法證明即可.22、,(4,1),(1,0)【題目詳解】分析:利用待定系數(shù)法、描點法即可解決問題;本題解析:設(shè)二次函數(shù)的解析式y(tǒng)=ax2+bx+c.把(-1,0)(0,1),(2,9)代得到解得,∴二次數(shù)解析式y(tǒng)=-x+4x+1.當x=4時,y=1,當y=0時,x=-1或1.23、表格內(nèi)數(shù)據(jù):0.26,0.25,0.25(1)0.25;(2)1;(1).【分析】(1)直接利用頻數(shù)÷總數(shù)=頻率求出答案;(2)設(shè)袋子中白球有x個,利用表格中數(shù)據(jù)估算出得到黑球的頻率列出關(guān)于x的分式方程,【題目詳解】(1)251÷1000=0.251;∵大量重復(fù)試驗事件發(fā)生的頻率逐漸穩(wěn)定到0.25附近0.25,∴估計從袋中摸出一個球是黑球的概率是0.25;(2)設(shè)袋中白球為x個,=0.25,x=1.答:估計袋中有1個白球.(1)由題意畫樹狀圖得:由樹狀圖可知,所有可能出現(xiàn)的結(jié)果共有16種,這些結(jié)果出現(xiàn)的可能性相等,其中兩次都摸出白球的有9種情況.所以P(兩次都摸出白球)=.【題目點撥】本題主要考查了模擬實驗以及頻率求法和樹狀圖法與列表法求概率,解決本題的關(guān)鍵是要熟練掌握概率計算方法.24、(1)見解析;(2);(3)【分析】(1)由等腰三角形的性質(zhì)可得,然后根據(jù)三角形的外角性質(zhì)可得,進而可證得結(jié)論;(2)根據(jù)相似三角形的對應(yīng)邊成比例可得CE與x的關(guān)系,進一步即可得出結(jié)果;(3)根據(jù)(2)題的結(jié)果,利用二次函數(shù)的性質(zhì)可得AE最短時x的值,即BD的長,進而可得AD的長和△ADC的面積,進一步利用所求三角形的面積與△ADC的面積之比等于AE與AC之比即得答案.【題目詳解】解:(1)∵,∴,∵,∴,∵,∴,∴;(2)∵,∴,∴,∴,∴;(3)∵,∴時,的值最小為6.4,此時,∵,∴,∴,∴,∵,即,∴.【題目點撥】本題考查了相似三角形的判定和性質(zhì)、二次函數(shù)的性質(zhì)、勾股定理、等腰三角形的性質(zhì)和三角形的面積等知識,屬于中檔題型,熟練掌握相似三角形的判定和性質(zhì)與二次函數(shù)的性質(zhì)是解題的關(guān)鍵.25、(1)(2)();(3)或【分析】(1)過點作,垂足
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球非電動助殘設(shè)備行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球智能媒體芯片行業(yè)調(diào)研及趨勢分析報告
- 課件:《教育強國建設(shè)規(guī)劃綱要(2024-2035年)》學(xué)習(xí)宣講
- 進修學(xué)習(xí)合同書
- 2025深圳市建設(shè)工程施工合同(適用于招標工程固定單價施工合同)
- 工程可行性研究報告模板
- 終端設(shè)備維護服務(wù)合同
- 2025出租車輛承包合同范本
- 鋼筋綁扎勞務(wù)合同范本
- 醫(yī)院裝修合同
- 人教版《道德與法治》四年級下冊教材簡要分析課件
- 2023年MRI技術(shù)操作規(guī)范
- 辦公用品、易耗品供貨服務(wù)方案
- 自行聯(lián)系單位實習(xí)申請表
- 醫(yī)療廢物集中處置技術(shù)規(guī)范
- 媒介社會學(xué)備課
- 2023年檢驗檢測機構(gòu)質(zhì)量手冊(依據(jù)2023年版評審準則編制)
- 三相分離器原理及操作
- 新教科版五年級下冊科學(xué)全冊每節(jié)課后練習(xí)+答案(共28份)
- 葫蘆島尚楚環(huán)??萍加邢薰踞t(yī)療廢物集中處置項目環(huán)評報告
- 全國物業(yè)管理項目經(jīng)理考試試題
評論
0/150
提交評論