2024屆湖北省孝感市應城市數(shù)學九上期末監(jiān)測模擬試題含解析_第1頁
2024屆湖北省孝感市應城市數(shù)學九上期末監(jiān)測模擬試題含解析_第2頁
2024屆湖北省孝感市應城市數(shù)學九上期末監(jiān)測模擬試題含解析_第3頁
2024屆湖北省孝感市應城市數(shù)學九上期末監(jiān)測模擬試題含解析_第4頁
2024屆湖北省孝感市應城市數(shù)學九上期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆湖北省孝感市應城市數(shù)學九上期末監(jiān)測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如圖,AB是⊙O的切線,B為切點,AO與⊙O交于點C,若∠BAO=40°,則∠OCB的度數(shù)為()A.40° B.50° C.65° D.75°2.如圖,在矩形ABCD中,AD=10,AB=6,E為BC上一點,DE平分∠AEC,則CE的長為()A.1 B.2C.3 D.43.如圖,是的外接圓,是的直徑,若的半徑是,,則()A. B. C. D.4.如圖所示的幾何體的主視圖為()A. B. C. D.5.如圖,在菱形ABCD中,AB=4,按以下步驟作圖:①分別以點C和點D為圓心,大于CD的長為半徑畫弧,兩弧交于點M,N;②作直線MN,且MN恰好經(jīng)過點A,與CD交于點E,連接BE,則BE的值為()A. B.2 C.3 D.46.如圖所示,在平面直角坐標系中,已知點,,,以某點為位似中心,作出的位似圖形,則位似中心的坐標為()A. B. C. D.7.如圖,AB是⊙O的弦,AC是⊙O的切線,A為切點,BC經(jīng)過圓心,若∠B=25°,則∠C的大小等于()A.25° B.20° C.40° D.50°8.如圖,⊙O是△ABC的外接圓,∠B=60°,OP⊥AC于點P,OP=2,則⊙O的半徑為().A.4 B.6 C.8 D.129.如圖,在矩形AOBC中,點A的坐標為(-2,1),點C的縱坐標是4,則B,C兩點的坐標分別是()A.(,),(,) B.(,),(,)C.(,),(,) D.(,),(,)10.小明利用計算機列出表格對一元二次方程進行估根如表:那么方程的一個近似根是()A. B. C. D.11.關于x的一元二次方程x2+8x+q=0有兩個不相等的實數(shù)根,則q的取值范圍是()A.q<16 B.q>16C.q≤4 D.q≥412.如圖,點D是△ABC的邊AB上的一點,過點D作BC的平行線交AC于點E,連接BE,過點D作BE的平行線交AC于點F,則下列結論錯誤的是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,△ODC是由△OAB繞點O順時針旋轉40°后得到的圖形,若點D恰好落在AB上,且∠AOC=105°,則∠C=__.14.已知甲、乙兩組數(shù)據(jù)的折線圖如圖,設甲、乙兩組數(shù)據(jù)的方差分別為S甲2、S乙2,則S甲2__S乙2(填“>”、“=”、“<”)15.如圖,已知△AOB是直角三角形,∠AOB=90°,∠B=30°,點A在反比例函數(shù)y=的圖象上,若點B在反比例函數(shù)y=的圖象上,則的k值為_______.16.計算sin60°cos60°的值為_____.17.圓內(nèi)接正六邊形一邊所對的圓周角的度數(shù)是__________.18.如圖,圓形紙片⊙O半徑為5,先在其內(nèi)剪出一個最大正方形,再在剩余部分剪出4個最大的小正方形,則4個小正方形的面積和為_______.三、解答題(共78分)19.(8分)為弘揚中華民族傳統(tǒng)文化,某市舉辦了中小學生“國學經(jīng)典大賽”,比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經(jīng).比賽形式分“單人組”和“雙人組”.(1)小華參加“單人組”,他從中隨機抽取一個比賽項目,恰好抽中“論語”的概率是多少?(2)小明和小紅組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次.則恰好小明抽中“唐詩”且小紅抽中“宋詞”的概率是多少?小明和小紅都沒有抽到“三字經(jīng)”的概率是多少?請用畫樹狀圖或列表的方法進行說明.20.(8分)某校的學生除了體育課要進行體育鍛煉外,寒暑假期間還要自己抽時間進行體育鍛煉,為了了解同學們假期體育鍛煉的情況,開學時體育老師隨機抽取了部分同學進行調(diào)查,按鍛煉的時間x(分鐘)分為以下四類:A類(),B類(),C類(),D類(),對調(diào)查結果進行整理并繪制了如圖所示的不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖,請結合圖中的信息解答下列各題:(1)扇形統(tǒng)計圖中D類所對應的圓心角度數(shù)為,并補全折線統(tǒng)計圖;(2)現(xiàn)從A類中選出兩名男同學和三名女同學,從以上五名同學中隨機抽取兩名同學進行采訪,請利用畫樹狀圖或列表的方法求出抽到的學生恰好是一男一女的概率.21.(8分)如圖,已知正方形的邊長為,點是對角線上一點,連接,將線段繞點順時針旋轉至的位置,連接、.(1)求證:;(2)當點在什么位置時,的面積最大?并說明理由.22.(10分)如圖1,中,,是的中點,平分交于點,在的延長線上且.(1)求證:四邊形是平行四邊形;(2)如圖2若四邊形是菱形,連接,,與交于點,連接,在不添加任何輔助線的情況下,請直接寫出圖2中的所有等邊三角形.23.(10分)如圖,⊙中,弦與相交于點,,連接.求證:⑴;⑵.24.(10分)如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點P,直線BF與AD延長線交于點F,且∠AFB=∠ABC.(1)求證:直線BF是⊙O的切線;(2)若CD=2,BP=1,求⊙O的半徑.25.(12分)如圖,正方形ABCD,△ABE是等邊三角形,M是正方形ABCD對角線AC(不含點A)上任意一點,將線段AM繞點A逆時針旋轉60°得到AN,連接EN、DM.求證:EN=DM.26.如圖,有一個三等分數(shù)字轉盤,小紅先轉動轉盤,指針指向的數(shù)字記下為,小芳后轉動轉盤,指針指向的數(shù)字記下為,從而確定了點的坐標,(若指針指向分界線,則重新轉動轉盤,直到指針指向數(shù)字為止)(1)小紅轉動轉盤,求指針指向的數(shù)字2的概率;(2)請用列舉法表示出由,確定的點所有可能的結果.(3)求點在函數(shù)圖象上的概率.

參考答案一、選擇題(每題4分,共48分)1、C【題目詳解】∵AB是⊙O的切線,∴AB⊥OA,即∠OBA=90°.∵∠BAO=40°,∴∠BOA=50°.∵OB=OC,∴∠OCB=.故選C.2、B【分析】根據(jù)平行線的性質以及角平分線的性質證明∠ADE=∠AED,根據(jù)等角對等邊,即可求得AE的長,在直角△ABE中,利用勾股定理求得BE的長,則CE的長即可求解.【題目詳解】解:∵四邊形ABCD是矩形,∴AD∥BC,∴∠DEC=∠ADE,又∵∠DEC=∠AED,∴∠ADE=∠AED,∴AE=AD=10,在直角△ABE中,BE=AE2∴CE=BC﹣BE=AD﹣BE=10﹣8=1.故選B.考點:矩形的性質;角平分線的性質.3、A【分析】連接CD,得∠ACD=90°,由圓周角定理得∠B=∠ADC,進而即可得到答案.【題目詳解】連接CD,∵AD是直徑,∴∠ACD=90°,∵的半徑是,∴AD=3,∵∠B=∠ADC,∴,故選A.【題目點撥】本題主要考查圓周角定理以及正弦三角函數(shù)的定義,掌握圓周角定理以及正弦三角函數(shù)的定義,是解題的關鍵.4、B【分析】根據(jù)三視圖的定義判斷即可.【題目詳解】解:所給幾何體是由兩個長方體上下放置組合而成,所以其主視圖也是上下兩個長方形組合而成,且上下兩個長方形的寬的長度相同.故選B.【題目點撥】本題考查了三視圖知識.5、B【解題分析】由作法得AE垂直平分CD,則∠AED=90°,CE=DE,于是可判斷∠DAE=30°,∠D=60°,作EH⊥BC于H,從而得到∠ECH=60°,利用三角函數(shù)可求出EH、CH的值,再利用勾股定理即可求出BE的長.【題目詳解】解:如圖所示,作EH⊥BC于H,由作法得AE垂直平分CD,∴∠AED=90°,CE=DE=2,∵四邊形ABCD為菱形,∴AD=2DE,∴∠DAE=30°,∴∠D=60°,∵AD//BC,∴∠ECH=∠D=60°,在Rt△ECH中,EH=CE·sin60°=,CH=CE·cos60°=,∴BH=4+1=5,在Rt△BEH中,由勾股定理得,.故選B.【題目點撥】本題考查了垂直平分線的性質、菱形的性質、解直角三角形等知識.合理構造輔助線是解題的關鍵.6、C【分析】直接利用位似圖形的性質得出位似中心.【題目詳解】如圖所示,點P即為位似中點,其坐標為(2,2),故答案為:(2,2).【題目點撥】此題主要考查了位似變換,正確掌握位似中心的定義是解題關鍵.7、C【解題分析】連接OA,根據(jù)切線的性質,即可求得∠C的度數(shù).【題目詳解】如圖,連接OA.∵AC是⊙O的切線,∴∠OAC=90°.∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故選C.【題目點撥】本題考查了圓的切線性質,以及等腰三角形的性質,已知切線時常用的輔助線是連接圓心與切點.8、A【解題分析】∵圓心角∠AOC與圓周角∠B所對的弧都為,且∠B=60°,∴∠AOC=2∠B=120°(在同圓或等圓中,同弧所對圓周角是圓心角的一半).又OA=OC,∴∠OAC=∠OCA=30°(等邊對等角和三角形內(nèi)角和定理).∵OP⊥AC,∴∠AOP=90°(垂直定義).在Rt△AOP中,OP=2,∠OAC=30°,∴OA=2OP=4(直角三角形中,30度角所對的邊是斜邊的一半).∴⊙O的半徑4.故選A.9、C【分析】如過點A、B作x軸的垂線垂足分別為F、M.過點C作y軸的垂線交FA、根據(jù)△AOF∽△CAE,△AOF≌△BCN,△ACE≌△BOM解決問題.【題目詳解】解:如圖過點A、B作x軸的垂線垂足分別為F、M.過點C作y軸的垂線交FA、∵點A坐標(-2,1),點C縱坐標為4,∴AF=1,F(xiàn)O=2,AE=3,∵∠EAC+∠OAF=90°,∠OAF+∠AOF=90°,∴∠EAC=∠AOF,∵∠E=∠AFO=90°,∴△AEC∽△OFA,,∴點C坐標,∵△AOF≌△BCN,△AEC≌△BMO,∴CN=2,BN=1,BM=MN-BN=3,BM=AE=3,,∴點B坐標,故選C.【題目點撥】本題考查矩形的性質、坐標與圖形的性質,添加輔助線構造全等三角形或相似三角形是解題的關鍵,屬于中考??碱}型.10、C【分析】根據(jù)表格中的數(shù)據(jù),0與最接近,故可得其近似根.【題目詳解】由表得,0與最接近,故其近似根為故答案為C.【題目點撥】此題主要考查對近似根的理解,熟練掌握,即可解題.11、A【解題分析】∵關于x的一元二次方程x2+8x+q=0有兩個不相等的實數(shù)根,∴△>0,即82-4q>0,∴q<16,故選A.12、D【分析】由平行線分線段成比例和相似三角形的性質進行判斷.【題目詳解】∵DE//BC,∴,故A正確;∵DF//BE,∴△ADF∽△ABF,∴,故B正確;∵DF//BE,∴,∵,∴,故C正確;∵DE//BC,∴△ADE∽△ABC,∴,∵DF//BE,∴,∴,故D錯誤.故選D.【題目點撥】本題考查平行線分線段成比例性質,相似三角形的性質,由平行線得出比例關系是關鍵.二、填空題(每題4分,共24分)13、【分析】先根據(jù)∠AOC的度數(shù)和∠BOC的度數(shù),可得∠AOB的度數(shù),再根據(jù)△AOD中,AO=DO,可得∠A的度數(shù),進而得出△ABO中∠B的度數(shù),可得∠C的度數(shù).【題目詳解】解:∵∠AOC的度數(shù)為105°,由旋轉可得∠AOD=∠BOC=40°,∴∠AOB=105°-40°=65°,∵△AOD中,AO=DO,∴∠A=(180°-40°)=70°,∴△ABO中,∠B=180°-70°-65°=45°,由旋轉可得,∠C=∠B=45°,故答案為:45°.【題目點撥】本題考查旋轉的性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用旋轉的性質解答.14、>【解題分析】要比較甲、乙方差的大小,就需要求出甲、乙的方差;首先根據(jù)折線統(tǒng)計圖結合根據(jù)平均數(shù)的計算公式求出這兩組數(shù)據(jù)的平均數(shù);接下來根據(jù)方差的公式求出甲、乙兩個樣本的方差,然后比較即可解答題目.【題目詳解】甲組的平均數(shù)為:=4,S甲2=×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=,乙組的平均數(shù)為:=4,S乙2=×[(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2]=,∵>,∴S甲2>S乙2.故答案為:>.【題目點撥】本題考查的知識點是方差,算術平均數(shù),折線統(tǒng)計圖,解題的關鍵是熟練的掌握方差,算術平均數(shù),折線統(tǒng)計圖.15、-3【分析】根據(jù)已知條件證得OB=OA,設點A(a,),過點A作AC⊥x軸,過點B作BD⊥x軸,證明△AOC∽△OBD得到,=,得到點B的坐標,由此求出答案.【題目詳解】∵△AOB是直角三角形,∠AOB=90°,∠B=30°,∴OB=OA,設點A(a,),過點A作AC⊥x軸,過點B作BD⊥x軸,∴∠ACO=∠BDO=90°,∴∠BOD+∠OBD=90°,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠AOC=∠OBD,∴△AOC∽△OBD,∴,∴,=,∴B(-,),∴k=-=-3,故答案為:-3.【題目點撥】此題考查相似三角形的判定及性質,反比例函數(shù)的性質,求函數(shù)的解析式需確定的圖象上點的坐標,由此作輔助線求點B的坐標解決問題.16、【分析】直接利用特殊角的三角函數(shù)值代入求出答案.【題目詳解】原式=×.故答案為:.【題目點撥】本題主要考查了特殊角的三角函數(shù)值,正確記憶相關數(shù)據(jù)是解題關鍵.17、30°或150°【分析】求出一條邊所對的圓心角的度數(shù),再根據(jù)圓周角和圓心角的關系解答.【題目詳解】解:圓內(nèi)接正六邊形的邊所對的圓心角360°÷6=60°,圓內(nèi)接正六邊形的一條邊所對的弧可能是劣弧,也可能是優(yōu)弧,

根據(jù)一條弧所對的圓周角等于它所對圓心角的一半,

所以圓內(nèi)接正六邊形的一條邊所對的圓周角的度數(shù)是30°或150°,故答案為30°或150°.【題目點撥】本題考查學生對正多邊形的概念掌握和計算的能力,涉及的知識點有正多邊形的中心角、圓周角與圓心角的關系,屬于基礎題,要注意分兩種情況討論.18、16【分析】根據(jù)題意可知四個小正方形的面積相等,構造出直角△OAB,設小正方形的面積為x,根據(jù)勾股定理求出x值即可得到小正方形的邊長,從而算出4個小正方形的面積和.【題目詳解】解:如圖,點A為上面小正方形邊的中點,點B為小正方形與圓的交點,D為小正方形和大正方形重合邊的中點,由題意可知:四個小正方形全等,且△OCD為等腰直角三角形,∵⊙O半徑為5,根據(jù)垂徑定理得:∴OD=CD==5,設小正方形的邊長為x,則AB=,則在直角△OAB中,OA2+AB2=OB2,即,解得x=2,∴四個小正方形的面積和=.故答案為:16.【題目點撥】本題考查了垂徑定理、勾股定理、正方形的性質,熟練掌握利用勾股定理解直角三角形是解題的關鍵.三、解答題(共78分)19、(2);(2)見解析.【分析】(1)直接利用概率公式求解即可;(2)先畫樹狀圖展示所有12種等可能的結果數(shù),再找出恰好小明抽中“唐詩”且小紅抽中“宋詞”的結果數(shù)及小明和小紅都沒有抽到“三字經(jīng)”的結果數(shù),然后根據(jù)概率公式求解.【題目詳解】解:(1)他從中隨機抽取一個比賽項目,恰好抽中“三字經(jīng)”的概率=.(2)畫樹狀圖為:共有12種等可能的結果數(shù);所以恰好小明抽中“唐詩”且小紅抽中“宋詞”的概率=小明和小紅都沒有抽到“三字經(jīng)”的概率==【題目點撥】本題考查了列表法與樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結果求出n,再從中選出符合事件A或B的結果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.20、(1);(2)畫圖見解析,.【分析】(1)先由A類型的人數(shù)及其所占百分比求出總人數(shù),再用360乘以D類型人數(shù)占被調(diào)查人數(shù)的比例可得其對應圓心角度數(shù),利用各類型人數(shù)之和等于總人數(shù)求出B類型人數(shù),從而補全折線圖;(2)用A表示女生,B表示男生,畫樹狀圖得出所有等可能結果,從中找到符合條件的結果數(shù),再利用概率公式求解可得.【題目詳解】(1)∵被調(diào)查的總人數(shù)為48÷40%=120(人),∴扇形統(tǒng)計圖中D類所對應的圓心角度數(shù)為360×=,B類型人數(shù)為120?(48+24+6)=42(人),補全折線統(tǒng)計圖如下:故答案為:;(2)用A表示女生,B表示男生,畫樹狀圖共有20種情況,其中一男一女有12種情況,故抽到學生恰好是一男一女的概率【題目點撥】本題考查列表法與樹狀圖法、折線統(tǒng)計圖、扇形統(tǒng)計圖,解題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答問題.21、(1)見解析;(2)在中點時,的面積最大,見解析【分析】(1)由題意推出,結合正方形的性質利用SAS證明;(2)設AE=x,表示出AF,根據(jù)∠EAF=90°,得出關于面積的二次函數(shù),利用二次函數(shù)的最值求解.【題目詳解】解:(1)∵繞點順時針旋轉至的位置,∴,,∵在正方形中,∴,,∴,即,∴;(2)由(1)知,∴,,∴,設,∵正方形的邊長為,故,∴,∴,∴當即在中點時,的面積最大.【題目點撥】本題考查了全等三角形的判定、旋轉的性質和二次函數(shù)的性質,準確利用題中的條件進行判定和證明,將待求的量轉化為二次函數(shù)最值.22、(1)詳見解析;(2)△ACF、、、【分析】(1)在中,,是的中點,可得,再通過,得證,再通過證明,得證,即可證明四邊形BCEF是平行四邊形;(2)根據(jù)題意,直接寫出符合條件的所有等邊三角形即可.【題目詳解】(1)證明:∵在中,,是的中點∴,∵,∴,∵平分,∴,∵,∴,∵,∴,∴又∵,∴四邊形BCEF是平行四邊形;(2)∵四邊形是菱形∴,∵∴∴△BCE和△BEF是等邊三角形∴∴∵∴∴∴∴∴在△CDE和△CGE中∴∴∴是等邊三角形∴∴∴∴∴∴△ACF是等邊三角形∴等邊三角形有△ACF,,,【題目點撥】本題考查了幾何圖形的綜合問題,掌握直角三角形的斜邊中線定理、平行的性質以及判定定理、平行四邊形的性質以及判定、菱形的性質是解題的關鍵.23、(1)見解析;(2)見解析.【分析】(1)由AB=CD知,即,據(jù)此可得答案;(2)由知AD=BC,結合∠ADE=∠CBE,∠DAE=∠BCE可證△ADE≌△CBE,從而得出答案.【題目詳解】證明(1)∵AB=CD,∴,即,∴;(2)∵,∴AD=BC,又∵∠ADE=∠CBE,∠DAE=∠BCE,∴△ADE≌△CBE(ASA),∴AE=CE.【題目點撥】本題主要考查圓心角、弧、弦的關系,圓心角、弧、弦三者的關系可理解為:在同圓或等圓中,①圓心角相等,②所對的弧相等,③所對的弦相等,三項“知一推二”,一項相等,其余二項皆相等.24、(1)見解析;(2)1【分析】(1)由圓周角定理得出∠ABC=∠ADC,由已知得出∠ADC=∠AFB,證出CD∥BF,得出AB⊥BF,即可得出結論;(2)設⊙O的半徑為r,連接OD.由垂徑定理得出PD=PC=CD=,得出OP=r-1在Rt△OPD中,由勾股定理得出方程,解方程即可.【題目詳解】解:(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論