版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆山東省濟南市山東師范大學附中高一數(shù)學第一學期期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)fx=2x2+bx+c(b,c為實數(shù)),f-10=f12.若方程A.4 B.2C.1 D.12.下列函數(shù)中,是奇函數(shù)且在其定義域內(nèi)單調(diào)遞增的是A. B.C. D.3.劉徽(約公元225年—295年),魏晉期間偉大的數(shù)學家,中國古典數(shù)學理論的奠基人之一.他在割圓術中提出的“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術的核心思想是將一個圓的內(nèi)接正邊形等分成個等腰三角形(如圖所示),當變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術的思想,可以得到的近似值為()A. B.C. D.4.設全集U=R,集合A={x|0<x<4},集合B={x|3≤x<5},則A∩(?UB)=()A. B.C. D.5.函數(shù)f(x)=|x-2|-lnx在定義域內(nèi)零點的個數(shù)為()A.0 B.1C.2 D.36.若,則所在象限是A.第一、三象限 B.第二、三象限C.第一、四象限 D.第二、四象限7.設入射光線沿直線y=2x+1射向直線,則被反射后,反射光線所在的直線方程是A. B.C. D.8.函數(shù)的零點所在區(qū)間為()A. B.C. D.9.集合{α|k·180°+45°≤α≤k·180°+90°,k∈Z}中的角α的終邊在單位圓中的位置(陰影部分)是()A. B.C. D.10.定義在上的奇函數(shù),滿足,則()A. B.C.0 D.1二、填空題:本大題共6小題,每小題5分,共30分。11.已知集合,若,則_______.12.已知圓錐的側(cè)面展開圖是一個半徑為2的半圓,則這個圓錐的高是_______13.已知sinα+cosα=,α∈(-π,0),則tanα=________.14.函數(shù)在上為單調(diào)遞增函數(shù),則實數(shù)的取值范圍是______15.設函數(shù),則____________.16.已知,,且,則的最小值為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,,函數(shù).(1)當時,求不等式的解集;(2)若,求的最小值,并求此時a,b的值.18.已知函數(shù)是偶函數(shù),且,.(1)當時,求函數(shù)的值域;(2)設,,求函數(shù)的最小值;(3)設,對于(2)中的,是否存在實數(shù),使得函數(shù)在時有且只有一個零點?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.19.如圖,直三棱柱ABC﹣A1B1C1中,M,N分別為棱AC和A1B1的中點,且AB=BC(1)求證:平面BMN⊥平面ACC1A1;(2)求證:MN∥平面BCC1B120.已知函數(shù)(常數(shù)).(Ⅰ)當時,求不等式的解集;(Ⅱ)當時,求最小值.21.如圖,在正方體ABCD-A1B1C1D1中,E、F、G分別是CB、CD、CC1的中點(Ⅰ)求證:平面AB1D1∥平面EFG;(Ⅱ)A1C⊥平面EFG
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】由f-10=f12求得b=-4,再由方程fx=0有兩個正實數(shù)根x1【題目詳解】因為函數(shù)fx=2x2+bx+c(b所以200-10b+c=288+12b+c,解得b=-4,所以fx因為方程fx=0有兩個正實數(shù)根x1所以Δ=16-8c≥0解得0<c≤2,所以1x當c=2時,等號成立,所以其最小值是2,故選:B2、C【解題分析】根據(jù)題意,依次分析選項中函數(shù)的奇偶性與單調(diào)性,綜合即可得答案【題目詳解】解:根據(jù)題意,依次分析選項:對于A,y=sinx,是正弦函數(shù),在定義域上不是增函數(shù);不符合題意;對于B,y=tanx,為正切函數(shù),在定義域上不是增函數(shù),不符合題意;對于C,y=x3,是奇函數(shù)且在其定義域內(nèi)單調(diào)遞增,符合題意;對于D,y=ex為指數(shù)函數(shù),不是奇函數(shù),不符合題意;故選C【題目點撥】本題考查函數(shù)的奇偶性與單調(diào)性的判定,關鍵是掌握常見函數(shù)的奇偶性與單調(diào)性3、B【解題分析】將一個圓的內(nèi)接正邊形等分成個等腰三角形;根據(jù)題意,可知個等腰三角形的面積和近似等于圓的面積,從而可求的近似值.【題目詳解】將一個圓的內(nèi)接正邊形等分成個等腰三角形,設圓的半徑為,則,即,所以.故選:B.4、D【解題分析】先求?UB,然后求A∩(?UB)【題目詳解】∵(?UB)={x|x<3或x≥5},∴A∩(?UB)={x|0<x<3}故選D【題目點撥】本題主要考查集合的基本運算,比較基礎5、C【解題分析】分別畫出函數(shù)y=lnx(x>0)和y=|x-2|(x>0)的圖像,可得2個交點,故f(x)在定義域中零點個數(shù)為2.6、A【解題分析】先由題中不等式得出在第二象限,然后求出的范圍,即可判斷其所在象限【題目詳解】因為,,所以,故在第二象限,即,故,當為偶數(shù)時,在第一象限,當為奇數(shù)時,在第三象限,即所在象限是第一、三象限故選A.【題目點撥】本題考查了三角函數(shù)的象限角,屬于基礎題7、D【解題分析】由可得反射點A(?1,?1),在入射光線y=2x+1上任取一點B(0,1),則點B(0,1)關于y=x的對稱點C(1,0)在反射光線所在的直線上根據(jù)點A(?1,?1)和點C(1,0)坐標,利用兩點式求得反射光線所在的直線方程是,化簡可得x?2y?1=0.故選D.8、B【解題分析】根據(jù)零點存在性定理即可判斷求解.【題目詳解】∵f(x)定義域為R,且f(x)在R上單調(diào)遞增,又∵f(1)=-10<0,f(2)=19>0,∴f(x)在(1,2)上存在唯一零點.故選:B.9、C【解題分析】利用賦值法來求得正確答案.【題目詳解】當k=2n,n∈Z時,n360°+45°≤α≤n360°+90°,n∈Z;當k=2n+1,n∈Z時,n360°+225°≤α≤n360°+270°,n∈Z.故選:C10、D【解題分析】由得出,再結(jié)合周期性得出函數(shù)值.【題目詳解】,,即,,則故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】根據(jù)求得,由此求得.【題目詳解】由于,所以,所以.故答案為:12、【解題分析】設圓錐的母線為,底面半徑為則因此圓錐的高是考點:圓錐的側(cè)面展開圖13、.【解題分析】由題意利用同角三角函數(shù)的基本關系,以及三角函數(shù)在各個象限中的符號,求得和的值,可得的值.【題目詳解】因為sinα+cosα=,①所以sin2α+cos2α+2sinαcosα=,即2sinαcosα=.因為α∈(-π,0),所以sinα<0,cosα>0,所以sinα-cosα=,與sinα+cosα=聯(lián)立解得sinα=-,cosα=,所以tanα=.故答案為:.【題目點撥】該題考查的是有關三角函數(shù)恒等變換化簡求值問題,涉及到的知識點有同角三角函數(shù)關系式,在解題的過程中,注意這三個式子是知一求二,屬于簡單題目.14、【解題分析】令∴即函數(shù)的增區(qū)間為,又函數(shù)在上為單調(diào)遞增函數(shù)∴令得:,即,得到:,又∴實數(shù)的取值范圍是故答案為15、【解題分析】依據(jù)分段函數(shù)定義去求的值即可.【題目詳解】由,可得,則由,可得故答案為:16、12【解題分析】,展開后利用基本不等式可求【題目詳解】∵,,且,∴,當且僅當,即,時取等號,故的最小值為12故答案為:12三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)最小值是3,,【解題分析】(1)代入a,b,解分式不等式即可;(2)利用“1”的變形及均值不等式求出最小值,根據(jù)等號成立的條件求出a,b.【小問1詳解】當時,,因為由整理得,解得,所以不等式的解集是【小問2詳解】因為,所以,,因為所以,即的最小值是3.當且僅當即時等號成立,又,所以,,18、(1)(2)(3)存在,【解題分析】(1)由條件求出,由此求出,利用單調(diào)性求其在時的值域;(2)利用換元法,考慮軸與區(qū)間的位置關系求,(3)令,由已知可得函數(shù),,在上有且僅有一個交點,由此列不等式求的取值范圍.【小問1詳解】因為函數(shù)是偶函數(shù),故而,可得,則,故易知在上單調(diào)遞增,故,;故【小問2詳解】令,故;則,對稱軸為①當時,在上單增,故;②當時,在上單減,在上單增,故;③當時,在上單減,故;故函數(shù)的最小值【小問3詳解】由(2)知當時,;則,即令,,問題等價于兩個函數(shù)與的圖象在上有且只有一個交點;由,函數(shù)的圖象開口向下,對稱軸為,在上單調(diào)遞減,在上單調(diào)遞增,可圖知;故【題目點撥】函數(shù)的零點個數(shù)與函數(shù)和的圖象的交點個數(shù)相等,故可通過函數(shù)圖象研究形如函數(shù)的零點問題.19、(1)見解析;(2)見解析【解題分析】(1)由面面垂直的性質(zhì)定理證明平面,再由面面垂直的判定定理得證面面垂直;(2)取BC中點P,連接B1P和MP,可證MN∥PB1,從而可證線面平行【題目詳解】(1)因為M為棱AC的中點,且AB=BC,所以BM⊥AC,又因為ABC﹣A1B1C1是直三棱柱,所以AA1⊥平面ABC因為BM?平面ABC,所以AA1⊥BM又因為AC,A1A?平面ACC1A1且AC∩A1A=A,所以BM⊥平面ACC1A1因為BM?平面BMN,所以:平面BMN⊥平面ACC1A1(2)取BC的中點P,連接B1P和MP,因為M、P為棱AC、BC的中點,所以MP∥AB,且MPAB,因為ABC﹣A1B1C1是直三棱柱,所以A1B1∥AB,A1B1=AB因為N為棱A1B1的中點,所以B1N∥BA,且B1NBA;所以B1N∥PM,且B1N=PM;所以MNB1P是平行四邊形,所以MN∥PB1又因為MN?平面BCC,PB1?平面BCC1B1所以MN∥平面BCC1B1【題目點撥】本題考查證明面面垂直與線面平行,掌握它們的判定定理是解題關鍵.立體幾何證明中,要由定理得出結(jié)論,必須滿足定理的所有條件,缺一不可.有些不明顯的結(jié)論需要證明,明顯的結(jié)論也要列舉出來,否則證明過程不完整20、(Ⅰ);(Ⅱ)答案見解析.【解題分析】(Ⅰ)由,得到,再由,利用一元二次不等式的解法結(jié)合對數(shù)函數(shù)的單調(diào)性求解;.(Ⅱ)化簡得到函數(shù),令,,轉(zhuǎn)化為函數(shù)在上的最小值求解.,【題目詳解】(Ⅰ)當時,,由得,即:,解得:,所以的解集為.(Ⅱ),,.令,因為,所以,若求在上的最小值,即求函數(shù)在上的最小值,,,對稱軸為.①當時,即時,函數(shù)在為減函數(shù),所以;②當時,即時,函數(shù)在為減函數(shù),在為增函數(shù),所以;③當,即時,函數(shù)在為增函數(shù),所以.綜上,當時,的最小值為;當時,的最小值為;當時,的最小值為.【題目點撥】方法點睛:(1)二次函數(shù)在閉區(qū)間上的最值主要有三種類型:軸定區(qū)間定、軸動區(qū)間定、軸定區(qū)間動,不論哪種類型,解決的關鍵是考查對稱軸與區(qū)間的關系,當含有參數(shù)時,要依據(jù)對稱軸與區(qū)間的關系進行分類討論.(2)二次函數(shù)的單調(diào)性問題則主要依據(jù)二次函數(shù)圖象的對稱軸進行分析討論求解21、(Ⅰ)見解析;(Ⅱ)見解析.【解題分析】(Ⅰ)連接,推導出四邊形是平行四邊形,從而.再證出,.從而平面,同理平面,由此能證明平面平面(Ⅱ)推導出,,從而平面,,同理,由此能證明平面AB1D1,從而平面【題目詳解】(Ⅰ)連接BC1,∵正方體ABCD-A1B1C1D1中,AB∥C1D1,AB=C1D1,∴四邊形ABC1D1是平行四邊形,∴AD1∥BC1.又∵E,G分別是BC,CC1的中點,∴EG∥BC1,∴EG∥AD1.又∵EG?平面AB1D1,AD1?平面AB1D1,∴EG∥平面AB1D1.同理EF∥平面AB1D1,且EG∩EF=E,EG?平面EFG,EF?平面EFG,∴平面AB1D1∥平面EFG.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度路面施工環(huán)境保護合同范本4篇
- 二零二五版跨境電商智能物流系統(tǒng)租賃合同3篇
- 二零二五年度材料買賣合同范本:石油化工材料購銷合作協(xié)議書2篇
- 二零二五年度版權合同管理崗位職責解析3篇
- 年度全熱風載流焊機戰(zhàn)略市場規(guī)劃報告
- 二零二五版導游人員國際交流聘用合同3篇
- 2025年度園林植物病蟲害防治勞務合同4篇
- 2024版建筑工程施工安全控制合同書一
- 二零二五年度搬家運輸貨物貨物包裝材料供應合同3篇
- 二零二五年個人商業(yè)房產(chǎn)抵押擔保合同樣本3篇
- GB/T 14864-2013實心聚乙烯絕緣柔軟射頻電纜
- 品牌策劃與推廣-項目5-品牌推廣課件
- 信息學奧賽-計算機基礎知識(完整版)資料
- 發(fā)煙硫酸(CAS:8014-95-7)理化性質(zhì)及危險特性表
- 數(shù)字信號處理(課件)
- 公路自然災害防治對策課件
- 信息簡報通用模板
- 火災報警應急處置程序流程圖
- 耳鳴中醫(yī)臨床路徑
- 安徽身份證號碼前6位
- 分子生物學在動物遺傳育種方面的應用
評論
0/150
提交評論