甘肅省蘭州新區(qū)舟曲中學2024屆高一數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第1頁
甘肅省蘭州新區(qū)舟曲中學2024屆高一數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第2頁
甘肅省蘭州新區(qū)舟曲中學2024屆高一數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第3頁
甘肅省蘭州新區(qū)舟曲中學2024屆高一數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第4頁
甘肅省蘭州新區(qū)舟曲中學2024屆高一數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

甘肅省蘭州新區(qū)舟曲中學2024屆高一數(shù)學第一學期期末統(tǒng)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知關(guān)于的方程()的根為負數(shù),則的取值范圍是()A. B.C. D.2.設(shè)集合,函數(shù),若,且,則的取值范圍是()A. B.(,)C. D.(,1]3.下列關(guān)系中,正確的是()A. B.C D.4.條件p:|x|>x,條件q:,則p是q的()A.充要條件 B.既不充分也不必要條件C.必要不充分條件 D.充分不必要條件5.下列選項中,兩個函數(shù)表示同一個函數(shù)的是()A., B.,C., D.,6.已知函數(shù),若有且僅有兩個不同實數(shù),,使得則實數(shù)的值不可能為A. B.C. D.7.已知函數(shù),若關(guān)于x的方程有五個不同實根,則m的值是()A.0或 B.C.0 D.不存在8.的值域是()A. B.C. D.9.劉徽(約公元225年—295年),魏晉期間偉大的數(shù)學家,中國古典數(shù)學理論的奠基人之一.他在割圓術(shù)中提出的“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個圓的內(nèi)接正邊形等分成個等腰三角形(如圖所示),當變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術(shù)的思想,可以得到的近似值為()A. B.C. D.10.若點在角的終邊上,則的值為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結(jié)論①AC⊥BD;②△ACD是等邊三角形;③AB與平面BCD成60°的角;④AB與CD所成的角是60°.其中正確結(jié)論的序號是________12.已知函數(shù),則_________13.已知函數(shù)(且),若對,,都有.則實數(shù)a的取值范圍是___________14.若不等式的解集為,則不等式的解集為______.15.已知函數(shù),則的值為_________.16.設(shè),,依次是方程,,的根,并且,則,,的大小關(guān)系是___三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知不等式.(1)求不等式的解集;(2)若當時,不等式總成立,求的取值范圍.18.已知函數(shù).(1)當時,求函數(shù)在區(qū)間上的值域;(2)求函數(shù)在區(qū)間上的最大值.19.已知偶函數(shù).(1)求實數(shù)的值;(2)經(jīng)過研究可知,函數(shù)在區(qū)間上單調(diào)遞減,求滿足條件的實數(shù)a的取值范圍.20.已知函數(shù).(1)判斷函數(shù)在R上的單調(diào)性,并用單調(diào)性的定義證明;(2)判斷函數(shù)的奇偶性,并證明;(3)若恒成立,求實數(shù)k的取值范圍.21.已知函數(shù),求:(1)的最小正周期及最大值;(2)若且,求的值;(3)若,在有兩個不等的實數(shù)根,求的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】分類參數(shù),將問題轉(zhuǎn)化為求函數(shù)在的值域,再利用指數(shù)函數(shù)的性質(zhì)進行求解.【題目詳解】將化為,因為關(guān)于的方程()的根為負數(shù),所以的取值范圍是在的值域,當時,,則,即的取值范圍是.故選:D.2、B【解題分析】按照分段函數(shù)先求出,由和解出的取值范圍即可.【題目詳解】,則,∵,解得,又故選:B.3、B【解題分析】根據(jù)對數(shù)函數(shù)的性質(zhì)判斷A,根據(jù)指數(shù)函數(shù)的性質(zhì)判斷B,根據(jù)正弦函數(shù)的性質(zhì)及誘導公式判斷C,根據(jù)余弦函數(shù)的性質(zhì)及誘導公式判斷D;【題目詳解】解:對于A:因為,,,故A錯誤;對于B:因為在定義域上單調(diào)遞減,因為,所以,又,,因為在上單調(diào)遞增,所以,所以,所以,故B正確;對于C:因為在上單調(diào)遞減,因為,所以,又,所以,故C錯誤;對于D:因為在上單調(diào)遞減,又,所以,又,所以,故D錯誤;故選:B4、D【解題分析】解不等式得到p:,q:或,根據(jù)推出關(guān)系得到答案.【題目詳解】由得:,所以p:,而,解得:或,故q:或,因為或,且或,故p是q的充分不必要條件故答案為:D5、C【解題分析】根據(jù)函數(shù)的定義域,即可判斷選項A的兩個函數(shù)不是同一個函數(shù),根據(jù)函數(shù)解析式不同,即可判斷選項B,D的兩函數(shù)都不是同一個函數(shù),從而為同一個函數(shù)的只能選C【題目詳解】A.的定義域為{x|x≠0},y=1的定義域為R,定義域不同,不是同一個函數(shù);B.和y=|x|的解析式不同,不是同一函數(shù);C.y=x的定義域為R,y=lnex=x的定義域為R,定義域和解析式都相同,是同一個函數(shù);D.=|x-1|,=x-1,解析式不同,不是同一個函數(shù)故選C【題目點撥】本題考查同一函數(shù)的定義,判斷兩函數(shù)是否為同一個函數(shù)的方法:看定義域和解析式是否都相同6、D【解題分析】利用輔助角公式化簡,由,可得,根據(jù)在上有且僅有兩個最大值,可求解實數(shù)的范圍,從而可得結(jié)果【題目詳解】函數(shù);由,可得,因為有且僅有兩個不同的實數(shù),,使得所以在上有且僅有兩個最大值,因為,,則;所以實數(shù)的值不可能為,故選D【題目點撥】本題主要考查輔助角公式的應用、三角函數(shù)的圖象與性質(zhì)的應用問題,也考查了數(shù)形結(jié)合思想,意在考查綜合應用所學知識解答問題的能力,屬于基礎(chǔ)題7、C【解題分析】令,做出的圖像,根據(jù)圖像確定至多存在兩個的值,使得與有五個交點時,的值或取值范圍,進而轉(zhuǎn)為求方程在的值或取值范圍有解,利用一元二次方程根的分布,即可求解.【題目詳解】做出圖像如下圖所示:令,方程,為,當時,方程沒有實數(shù)解,當或時,方程有2個實數(shù)解,當,方程有4個實數(shù)解,當時,方程有3個解,要使方程方程有五個實根,則方程有一根為1,另一根為0或大于1,當時,有或,當時,,或,滿足題意,當時,,或,不合題意,所以.故選:C.【題目點撥】本題考查復合方程的解,換元法是解題的關(guān)鍵,數(shù)形結(jié)合是解題的依賴,或直接用選項中的值代入驗證,屬于較難題.8、A【解題分析】先求得的范圍,再由單調(diào)性求值域【題目詳解】因,所以,又在時單調(diào)遞增,所以當時,函數(shù)取得最大值為,所以值域是,故選:A.9、B【解題分析】將一個圓的內(nèi)接正邊形等分成個等腰三角形;根據(jù)題意,可知個等腰三角形的面積和近似等于圓的面積,從而可求的近似值.【題目詳解】將一個圓的內(nèi)接正邊形等分成個等腰三角形,設(shè)圓的半徑為,則,即,所以.故選:B.10、A【解題分析】根據(jù)題意,確定角的終邊上點的坐標,再利用三角函數(shù)定義,即可求解,得到答案【題目詳解】由題意,點在角的終邊上,即,則,由三角函數(shù)的定義,可得故選A【題目點撥】本題主要考查了三角函數(shù)的定義的應用,其中解答中確定出角的終邊上點的坐標,利用三角函數(shù)的定義求解是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、①②④【解題分析】①取BD的中點O,連接OA,OC,所以,所以平面OAC,所以AC⊥BD;②設(shè)正方形的邊長為a,則在直角三角形ACO中,可以求得OC=a,所以△ACD是等邊三角形;③AB與平面BCD成45角;④分別取BC,AC的中點為M,N,連接ME,NE,MN.則MN∥AB,且MN=AB=a,ME∥CD,且ME=CD=a,∴∠EMN是異面直線AB,CD所成的角.在Rt△AEC中,AE=CE=a,AC=a,∴NE=AC=a.∴△MEN是正三角形,∴∠EMN=60°,故④正確考點:本小題主要考查平面圖形向空間圖形的折疊問題,考查學生的空間想象能力.點評:解決此類折疊問題,關(guān)鍵是搞清楚折疊前后的變量和不變的量.12、1【解題分析】根據(jù)分段函數(shù)的定義即可求解.【題目詳解】解:因為函數(shù),所以,所以,故答案為:1.13、【解題分析】由條件可知函數(shù)是增函數(shù),可得分段函數(shù)兩段都是增函數(shù),且時,滿足,由不等式組求解即可.【題目詳解】因為對,且都有成立,所以函數(shù)在上單調(diào)遞增.所以,解得.故答案為:14、【解題分析】由三個二次的關(guān)系求,根據(jù)分式不等式的解法求不等式的解集.【題目詳解】∵不等式的解集為∴,是方程的兩根,∴,∴可化為∴∴不等式的解集為,故答案為:.15、【解題分析】,填.16、【解題分析】本題首先可以根據(jù)分別是方程的根得出,再根據(jù)即可得出,然后通過函數(shù)與函數(shù)的性質(zhì)即可得出,最后得出結(jié)果【題目詳解】因為,,,所以,因為,,所以,,因為函數(shù)與函數(shù)都是單調(diào)遞增函數(shù),前者在后者的上方,所以,綜上所述,【題目點撥】本題考查方程的根的比較大小,通常可通過函數(shù)性質(zhì)或者根的大致取值范圍進行比較,考查函數(shù)思想,考查推理能力,是中檔題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】(1)利用對數(shù)函數(shù)的單調(diào)性以及真數(shù)大于零得出關(guān)于實數(shù)的不等式組,解出即可;(2)令,利用參變量分離法得出,求出函數(shù)在區(qū)間上的最小值,即可得出實數(shù)的取值范圍.【題目詳解】(1)由已知可得:,因此,原不等式解集為;(2)令,則原問題等價,且,令,可得,當時,即當時,函數(shù)取得最小值,即,.因此,實數(shù)的取值范圍是.【題目點撥】本題考查對數(shù)不等式的求解,同時也考查了指數(shù)不等式恒成立問題,將問題在轉(zhuǎn)化為二次不等式在區(qū)間上恒成立是解題的關(guān)鍵,考查化歸與轉(zhuǎn)化思想的應用,屬于中等題.18、(1)(2)【解題分析】(1)利用二次函數(shù)的圖象和性質(zhì)求值域;(2)討論對稱軸與區(qū)間中點的大小關(guān)系,即可得答案;【題目詳解】(1)由題意,當時,,又,對稱軸為,,離對稱軸較遠,,的值域為.(2)由題意,二次函數(shù)開口向上,對稱軸為,由數(shù)形結(jié)合知,(i)當,即時,;(ii)當,即時,,綜上:.【題目點撥】本題考查一元二次函數(shù)的值域求解,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力,求解時注意拋物線的開口方向及對稱軸與區(qū)間的位置關(guān)系.19、(1)0(2)【解題分析】(1)首先求出函數(shù)的定義域,再根據(jù)偶函數(shù)的性質(zhì),利用特殊值求出參數(shù)的值,再代入檢驗即可;(2)根據(jù)偶函數(shù)的性質(zhì)將函數(shù)不等式轉(zhuǎn)化為自變量的不等式,解得即可.【小問1詳解】解:由,有,可得函數(shù)的定義域為,,由函數(shù)為偶函數(shù),有,解得.當時,,由,可知此時函數(shù)為偶函數(shù),符合題意,由上知實數(shù)m的值為0;【小問2詳解】解:由函數(shù)為偶函數(shù),且函數(shù)在區(qū)間上單調(diào)遞減,可得函數(shù)在區(qū)間上單調(diào)遞增,若,有解得且,故實數(shù)a的取值范圍為.20、(1)在R上的單調(diào)遞增,證明見解析;(2)是奇函數(shù),證明見解析;(3).【解題分析】(1)利用單調(diào)性的定義證明,任取,設(shè),然后判斷與0的大小,即可確定單調(diào)性.(2),直接利用函數(shù)奇偶性的定義判斷;(3)利用函數(shù)是奇函數(shù),將題設(shè)不等式轉(zhuǎn)化為,再利用是上的單調(diào)增函數(shù)求解.【小問1詳解】函數(shù)是增函數(shù),任取,不妨設(shè),,∵,∴,又,∴,即,∴函數(shù)是上的增函數(shù).【小問2詳解】函數(shù)為奇函數(shù),證明如下:由解析式可得:,且定義域為關(guān)于原點對稱,,∴函數(shù)是定義域內(nèi)的奇函數(shù).【小問3詳解】由等價于,∵是上的單調(diào)增函數(shù),∴,即恒成立,∴,解得.21、(1)函數(shù)的最小正周期為,最大值為;(2);(3).【解題分析】(1)利用三角恒等變換思想化簡函數(shù)的解析式為,利用正弦型函數(shù)的周期公式可求得函數(shù)的最小正周期,利用正弦函數(shù)的有界性可求得函數(shù)的最大值;(2)求出的取值范圍,由可得出,可得出,進而可求得角的值;(3)令,由可求得,由可得出,問題轉(zhuǎn)化為直線與函數(shù)在上的圖象有兩個交點,數(shù)形結(jié)合可得出關(guān)于實數(shù)的不等式,由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論