云南省玉溪市元江縣一中2023年高三下學(xué)期(4月)模擬考試數(shù)學(xué)試題試卷_第1頁
云南省玉溪市元江縣一中2023年高三下學(xué)期(4月)模擬考試數(shù)學(xué)試題試卷_第2頁
云南省玉溪市元江縣一中2023年高三下學(xué)期(4月)模擬考試數(shù)學(xué)試題試卷_第3頁
云南省玉溪市元江縣一中2023年高三下學(xué)期(4月)模擬考試數(shù)學(xué)試題試卷_第4頁
云南省玉溪市元江縣一中2023年高三下學(xué)期(4月)模擬考試數(shù)學(xué)試題試卷_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

云南省玉溪市元江縣一中2023年高三下學(xué)期(4月)模擬考試數(shù)學(xué)試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知橢圓:的左、右焦點(diǎn)分別為,,點(diǎn),在橢圓上,其中,,若,,則橢圓的離心率的取值范圍為()A. B.C. D.2.設(shè)不等式組,表示的平面區(qū)域?yàn)?,在區(qū)域內(nèi)任取一點(diǎn),則點(diǎn)的坐標(biāo)滿足不等式的概率為A. B.C. D.3.若滿足,且目標(biāo)函數(shù)的最大值為2,則的最小值為()A.8 B.4 C. D.64.函數(shù)在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-25.已知函數(shù),若,且,則的取值范圍為()A. B. C. D.6.已知三點(diǎn)A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點(diǎn)的距離為()A. B.C. D.7.已知數(shù)列,,,…,是首項(xiàng)為8,公比為得等比數(shù)列,則等于()A.64 B.32 C.2 D.48.已知滿足,則()A. B. C. D.9.如圖,已知平面,,、是直線上的兩點(diǎn),、是平面內(nèi)的兩點(diǎn),且,,,,.是平面上的一動(dòng)點(diǎn),且直線,與平面所成角相等,則二面角的余弦值的最小值是()A. B. C. D.10.已知,是兩條不重合的直線,是一個(gè)平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則11.若,則“”的一個(gè)充分不必要條件是A. B.C.且 D.或12.已知實(shí)數(shù)滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.11二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù)滿足則點(diǎn)構(gòu)成的區(qū)域的面積為____,的最大值為_________14.在中,點(diǎn)在邊上,且,設(shè),,則________(用,表示)15.設(shè)、、、、是表面積為的球的球面上五點(diǎn),四邊形為正方形,則四棱錐體積的最大值為__________.16.已知是拋物線的焦點(diǎn),是上一點(diǎn),的延長線交軸于點(diǎn).若為的中點(diǎn),則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某超市計(jì)劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.18.(12分)已知.(1)已知關(guān)于的不等式有實(shí)數(shù)解,求的取值范圍;(2)求不等式的解集.19.(12分)已知函數(shù)(1)若對任意恒成立,求實(shí)數(shù)的取值范圍;(2)求證:20.(12分)已知數(shù)列滿足.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,證明:.21.(12分)在平面四邊形中,已知,.(1)若,求的面積;(2)若求的長.22.(10分)某調(diào)查機(jī)構(gòu)為了了解某產(chǎn)品年產(chǎn)量x(噸)對價(jià)格y(千克/噸)和利潤z的影響,對近五年該產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如下表:x12345y17.016.515.513.812.2(1)求y關(guān)于x的線性回歸方程;(2)若每噸該產(chǎn)品的成本為12千元,假設(shè)該產(chǎn)品可全部賣出,預(yù)測當(dāng)年產(chǎn)量為多少時(shí),年利潤w取到最大值?參考公式:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

根據(jù)可得四邊形為矩形,設(shè),,根據(jù)橢圓的定義以及勾股定理可得,再分析的取值范圍,進(jìn)而求得再求離心率的范圍即可.【詳解】設(shè),,由,,知,因?yàn)?在橢圓上,,所以四邊形為矩形,;由,可得,由橢圓的定義可得,①,平方相減可得②,由①②得;令,令,所以,即,所以,所以,所以,解得.故選:C【點(diǎn)睛】本題主要考查了橢圓的定義運(yùn)用以及構(gòu)造齊次式求橢圓的離心率的問題,屬于中檔題.2、A【解析】

畫出不等式組表示的區(qū)域,求出其面積,再得到在區(qū)域內(nèi)的面積,根據(jù)幾何概型的公式,得到答案.【詳解】畫出所表示的區(qū)域,易知,所以的面積為,滿足不等式的點(diǎn),在區(qū)域內(nèi)是一個(gè)以原點(diǎn)為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項(xiàng).【點(diǎn)睛】本題考查由約束條件畫可行域,求幾何概型,屬于簡單題.3、A【解析】

作出可行域,由,可得.當(dāng)直線過可行域內(nèi)的點(diǎn)時(shí),最大,可得.再由基本不等式可求的最小值.【詳解】作出可行域,如圖所示由,可得.平移直線,當(dāng)直線過可行域內(nèi)的點(diǎn)時(shí),最大,即最大,最大值為2.解方程組,得..,當(dāng)且僅當(dāng),即時(shí),等號成立.的最小值為8.故選:.【點(diǎn)睛】本題考查簡單的線性規(guī)劃,考查基本不等式,屬于中檔題.4、B【解析】

由函數(shù)解析式中含絕對值,所以去絕對值并畫出函數(shù)圖象,結(jié)合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當(dāng)時(shí),有最大值,當(dāng)時(shí),有最小值.故選:B.【點(diǎn)睛】本題考查了絕對值函數(shù)圖象的畫法,由函數(shù)圖象求函數(shù)的最值,屬于基礎(chǔ)題.5、A【解析】分析:作出函數(shù)的圖象,利用消元法轉(zhuǎn)化為關(guān)于的函數(shù),構(gòu)造函數(shù)求得函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,即可得到結(jié)論.詳解:作出函數(shù)的圖象,如圖所示,若,且,則當(dāng)時(shí),得,即,則滿足,則,即,則,設(shè),則,當(dāng),解得,當(dāng),解得,當(dāng)時(shí),函數(shù)取得最小值,當(dāng)時(shí),;當(dāng)時(shí),,所以,即的取值范圍是,故選A.點(diǎn)睛:本題主要考查了分段函數(shù)的應(yīng)用,構(gòu)造新函數(shù),求解新函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究新函數(shù)的單調(diào)性和最值是解答本題的關(guān)鍵,著重考查了轉(zhuǎn)化與化歸的數(shù)學(xué)思想方法,以及分析問題和解答問題的能力,試題有一定的難度,屬于中檔試題.6、B【解析】

選B.考點(diǎn):圓心坐標(biāo)7、A【解析】

根據(jù)題意依次計(jì)算得到答案.【詳解】根據(jù)題意知:,,故,,.故選:.【點(diǎn)睛】本題考查了數(shù)列值的計(jì)算,意在考查學(xué)生的計(jì)算能力.8、A【解析】

利用兩角和與差的余弦公式展開計(jì)算可得結(jié)果.【詳解】,.故選:A.【點(diǎn)睛】本題考查三角求值,涉及兩角和與差的余弦公式的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.9、B【解析】

為所求的二面角的平面角,由得出,求出在內(nèi)的軌跡,根據(jù)軌跡的特點(diǎn)求出的最大值對應(yīng)的余弦值【詳解】,,,,同理為直線與平面所成的角,為直線與平面所成的角,又,在平面內(nèi),以為軸,以的中垂線為軸建立平面直角坐標(biāo)系則,設(shè),整理可得:在內(nèi)的軌跡為為圓心,以為半徑的上半圓平面平面,,為二面角的平面角,當(dāng)與圓相切時(shí),最大,取得最小值此時(shí)故選【點(diǎn)睛】本題主要考查了二面角的平面角及其求法,方法有:定義法、三垂線定理及其逆定理、找公垂面法、射影公式、向量法等,依據(jù)題目選擇方法求出結(jié)果.10、D【解析】

利用空間位置關(guān)系的判斷及性質(zhì)定理進(jìn)行判斷.【詳解】解:選項(xiàng)A中直線,還可能相交或異面,選項(xiàng)B中,還可能異面,選項(xiàng)C,由條件可得或.故選:D.【點(diǎn)睛】本題主要考查直線與平面平行、垂直的性質(zhì)與判定等基礎(chǔ)知識;考查空間想象能力、推理論證能力,屬于基礎(chǔ)題.11、C【解析】,∴,當(dāng)且僅當(dāng)時(shí)取等號.故“且”是“”的充分不必要條件.選C.12、A【解析】

根據(jù)約束條件畫出可行域,再將目標(biāo)函數(shù)化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時(shí)候?yàn)檫^點(diǎn)的時(shí)候,解得所以,此時(shí)故選A項(xiàng)【點(diǎn)睛】本題考查線性規(guī)劃求一次相加的目標(biāo)函數(shù),屬于常規(guī)題型,是簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、811【解析】

畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合求得區(qū)域面積以及目標(biāo)函數(shù)的最值.【詳解】不等式組表示的平面區(qū)域如下圖所示:數(shù)形結(jié)合可知,可行域?yàn)槿切?,且底邊長,高為,故區(qū)域面積;令,變?yōu)?,顯然直線過時(shí),z最大,故.故答案為:;11.【點(diǎn)睛】本題考查簡單線性規(guī)劃問題,涉及區(qū)域面積的求解,屬基礎(chǔ)題.14、【解析】

結(jié)合圖形及向量的線性運(yùn)算將轉(zhuǎn)化為用向量表示,即可得到結(jié)果.【詳解】在中,因?yàn)?,所以,又因?yàn)?,所以.故答案為:【點(diǎn)睛】本題主要考查三角形中向量的線性運(yùn)算,關(guān)鍵是利用已知向量為基底,將未知向量通過幾何條件向基底轉(zhuǎn)化.15、【解析】

根據(jù)球的表面積求得球的半徑,設(shè)球心到四棱錐底面的距離為,求得四棱錐的表達(dá)式,利用基本不等式求得體積的最大值.【詳解】由已知可得球的半徑,設(shè)球心到四棱錐底面的距離為,棱錐的高為,底面邊長為,的體積,當(dāng)且僅當(dāng)時(shí)等號成立.故答案為:【點(diǎn)睛】本小題主要考查球的表面積有關(guān)計(jì)算,考查球的內(nèi)接四棱錐體積的最值的求法,屬于中檔題.16、【解析】

由題意可得,又由于為的中點(diǎn),且點(diǎn)在軸上,所以可得點(diǎn)的橫坐標(biāo),代入拋物線方程中可求點(diǎn)的縱坐標(biāo),從而可求出點(diǎn)的坐標(biāo),再利用兩點(diǎn)間的距離公式可求得結(jié)果.【詳解】解:因?yàn)槭菕佄锞€的焦點(diǎn),所以,設(shè)點(diǎn)的坐標(biāo)為,因?yàn)闉榈闹悬c(diǎn),而點(diǎn)的橫坐標(biāo)為0,所以,所以,解得,所以點(diǎn)的坐標(biāo)為所以,故答案為:【點(diǎn)睛】此題考查拋物線的性質(zhì),中點(diǎn)坐標(biāo)公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2).【解析】

(1)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率.(2)當(dāng)溫度大于等于25℃時(shí),需求量為500,求出Y=900元;當(dāng)溫度在[20,25)℃時(shí),需求量為300,求出Y=300元;當(dāng)溫度低于20℃時(shí),需求量為200,求出Y=﹣100元,從而當(dāng)溫度大于等于20時(shí),Y>0,由此能估計(jì)估計(jì)Y大于零的概率.【詳解】解:(1)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=54,根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區(qū)間[20,25),需求量為300瓶,如果最高氣溫低于20,需求量為200瓶,∴六月份這種酸奶一天的需求量不超過300瓶的概率p.(2)當(dāng)溫度大于等于25℃時(shí),需求量為500,Y=450×2=900元,當(dāng)溫度在[20,25)℃時(shí),需求量為300,Y=300×2﹣(450﹣300)×2=300元,當(dāng)溫度低于20℃時(shí),需求量為200,Y=400﹣(450﹣200)×2=﹣100元,當(dāng)溫度大于等于20時(shí),Y>0,由前三年六月份各天的最高氣溫?cái)?shù)據(jù),得當(dāng)溫度大于等于20℃的天數(shù)有:90﹣(2+16)=72,∴估計(jì)Y大于零的概率P.【點(diǎn)睛】本題考查概率的求法,考查利潤的所有可能取值的求法,考查函數(shù)、古典概型等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題.18、(1);(2).【解析】

(1)依據(jù)能成立問題知,,然后利用絕對值三角不等式求出的最小值,即求得的取值范圍;(2)按照零點(diǎn)分段法解含有兩個(gè)絕對值的不等式即可?!驹斀狻恳?yàn)椴坏仁接袑?shí)數(shù)解,所以因?yàn)?,所以故。①?dāng)時(shí),,所以,故②當(dāng)時(shí),,所以,故③當(dāng)時(shí),,所以,故綜上,原不等式的解集為。【點(diǎn)睛】本題主要考查不等式有解問題的解法以及含有兩個(gè)絕對值的不等式問題的解法,意在考查零點(diǎn)分段法、絕對值三角不等式和轉(zhuǎn)化思想、分類討論思想的應(yīng)用。19、(1);(2)見解析.【解析】

(1)將問題轉(zhuǎn)化為對任意恒成立,換元構(gòu)造新函數(shù)即可得解;(2)結(jié)合(1)可得,令,求導(dǎo)后證明其導(dǎo)函數(shù)單調(diào)遞增,結(jié)合,即可得函數(shù)的單調(diào)區(qū)間和最小值,即可得證.【詳解】(1)對任意恒成立等價(jià)于對任意恒成立,令,,則,當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;有最大值,.(2)證明:由(1)知,當(dāng)時(shí),即,,,令,則,令,則,在上是增函數(shù),又,當(dāng)時(shí),;當(dāng)時(shí),,在上是減函數(shù),在上是增函數(shù),,即,.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)解決恒成立問題,考查了利用導(dǎo)數(shù)證明不等式,考查了計(jì)算能力和轉(zhuǎn)化化歸思想,屬于中檔題.20、(1);(2)見解析.【解析】

(1)令,,利用可求得數(shù)列的通項(xiàng)公式,由此可得出數(shù)列的通項(xiàng)公式;(2)求得,利用裂項(xiàng)相消法求得,進(jìn)而可得出結(jié)論.【詳解】(1)令,,當(dāng)時(shí),;當(dāng)時(shí),,則,故;(2),.【點(diǎn)睛】本題考查利用求通項(xiàng),同時(shí)也考查了裂項(xiàng)相消法求和,考查計(jì)算能力與推理能力,屬于基礎(chǔ)題.21、(1);(2).【解析】

(1)在三角形中,利用余弦定理列方程,解方程求得的長,進(jìn)而由三角形的面積公式求得三角形的面積.(2)利用誘導(dǎo)公式求得,進(jìn)而求得,利用兩角差的正弦公式,求得,在三角形中利用正弦定理求得,在三角形中利用余弦定理求得的長.【詳解】(1)在中,,解得,.(2)在中,,..【點(diǎn)睛】本小題主要考查正弦定理、余弦定理解三角形,考查三角形的面積公式,屬于中檔題.22、(1)(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論