版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年全國100所名校最新高二數(shù)學第一學期期末達標檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若動點滿足方程,則動點P的軌跡方程為()A. B.C. D.2.將一顆骰子先后拋擲2次,觀察向上的點數(shù),則點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為()A. B.C. D.3.在中,內(nèi)角所對的邊為,若,,,則()A. B.C. D.4.曲線在處的切線如圖所示,則()A.0 B.C. D.5.已知函數(shù)與,則它們的圖象交點個數(shù)為()A.0 B.1C.2 D.不確定6.已知函數(shù)只有一個零點,則實數(shù)的取值范圍是()A B.C. D.7.直線恒過定點()A. B.C. D.8.在平面直角坐標系xOy中,雙曲線(,)的左、右焦點分別為,,點M是雙曲線右支上一點,,且,則雙曲線的離心率為()A. B.C. D.9.數(shù)學中的數(shù)形結(jié)合也可以組成世間萬物的絢麗畫面,-些優(yōu)美的曲線是數(shù)學形象美、對稱美、和諧美的產(chǎn)物.曲線C:為四葉玫瑰線.①方程(xy<0)表示的曲線在第二和第四象限;②曲線C上任一點到坐標原點0的距離都不超過2;③曲線C構(gòu)成的四葉玫瑰線面積大于4π;④曲線C上有5個整點(橫、縱坐標均為整數(shù)的點).則上述結(jié)論中正確的個數(shù)是()A.1 B.2C.3 D.410.已知,設函數(shù),若關(guān)于的不等式恒成立,則的取值范圍為()A. B.C. D.11.如圖為某幾何體的三視圖,則該幾何體中最大的側(cè)面積是()A.B.C.D.12.設變量x,y滿足約束條件則目標函數(shù)的最小值為()A.3 B.1C.0 D.﹣1二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線C:y2=8x的焦點為F,直線l過點F與拋物線C交于A,B兩點,以F為圓心的圓交線段AB于C,D兩點(從上到下依次為A,C,D,B),若,則該圓的半徑r的取值范圍是____________.14.已知橢圓的左、右焦點分別為,若橢圓上的點P滿足軸,,則該橢圓的離心率為___________15.已知正數(shù)滿足,則的最小值是__________.16.設函數(shù)為奇函數(shù),當時,,則_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:()過點,且離心率為(1)求橢圓C的方程;(2)過點()的直線l(不與x軸重合)與橢圓C交于A,B兩點,點C與點B關(guān)于x軸對稱,直線AC與x軸交于點Q,試問是否為定值?若是,請求出該定值,若不是,請說明理由18.(12分)已知數(shù)列的前n項和為,且滿足(1)證明數(shù)列是等比數(shù)列;(2)若數(shù)列滿足,證明數(shù)列的前n項和19.(12分)《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.如圖,在陽馬中,側(cè)棱底面,且,過棱的中點,作交于點,連接(1)證明:.試判斷四面體是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,說明理由;(2)記陽馬的體積為,四面體的體積為,求的值;(3)若面與面所成二面角的大小為,求的值20.(12分)已知直線,以點為圓心的圓C與直線l相切(1)求圓C的標方程;(2)過點的直線交圓C于A,B兩點,且,求的方程21.(12分)在平面直角坐標系中,設橢圓()的離心率是e,定義直線為橢圓的“類準線”,已知橢圓C的“類準線”方程為,長軸長為8.(1)求橢圓C的標準方程;(2)O為坐標原點,A為橢圓C的右頂點,直線l交橢圓C于E,F(xiàn)兩不同點(點E,F(xiàn)與點A不重合),且滿足,若點P滿足,求直線的斜率的取值范圍.22.(10分)已知橢圓的焦距為4,點在G上.(1)求橢圓G方程;(2)過橢圓G右焦點的直線l與橢圓G交于M,N兩點,O為坐標原點,若,求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)方程可以利用幾何意義得到動點P的軌跡方程是以與為焦點的橢圓方程,從而求出軌跡方程.【詳解】由題意得:到與的距離之和為8,且8>4,故動點P的軌跡方程是以與為焦點的橢圓方程,故,,所以,,所以橢圓方程為.故選:A2、B【解析】基本事件總數(shù),再利用列舉法求出點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件的個數(shù),由此能求出點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率【詳解】解:將一顆骰子先后拋擲2次,觀察向上的點數(shù)之和,基本事件總數(shù),點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件有:,,,,,,,,共8個,則點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為故選:B3、B【解析】利用正弦定理角化邊得到,再利用余弦定理構(gòu)造方程求得結(jié)果.【詳解】,,由余弦定理得:,,.故選:B.4、C【解析】由圖示求出直線方程,然后求出,,即可求解.【詳解】由直線經(jīng)過,,可求出直線方程為:∵在處的切線∴,∴故選:C【點睛】用導數(shù)求切線方程常見類型:(1)在出的切線:為切點,直接寫出切線方程:;(2)過出的切線:不是切點,先設切點,聯(lián)立方程組,求出切點坐標,再寫出切線方程:.5、B【解析】令,判斷的單調(diào)性并計算的極值,根據(jù)極值與0的大小關(guān)系判斷的零點個數(shù),得出答案.【詳解】令,則,由,得,∴當時,,當時,.∴當時,取得最小值,∴只有一個零點,即與的圖象只有1個交點.故選:B.6、B【解析】將題目轉(zhuǎn)化為函數(shù)的圖像與的圖像只有一個交點,利用導數(shù)研究函數(shù)的單調(diào)性與極值,作出圖像,利用數(shù)形結(jié)合求出的取值范圍.【詳解】由函數(shù)只有一個零點,等價于函數(shù)的圖像與的圖像只有一個交點,,求導,令,得當時,,函數(shù)在上單調(diào)遞減;當時,,函數(shù)在上單調(diào)遞增;當時,,函數(shù)在上單調(diào)遞減;故當時,函數(shù)取得極小值;當時,函數(shù)取得極大值;作出函數(shù)圖像,如圖所示,由圖可知,實數(shù)的取值范圍是故選:B【點睛】方法點睛:已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進而構(gòu)造兩個函數(shù),然后在同一平面直角坐標系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.7、A【解析】將直線方程變形得,再根據(jù)方程即可得答案.【詳解】解:由得到:,∴直線恒過定點故選:A8、A【解析】本題考查雙曲線的定義、幾何性質(zhì)及直角三角形的判定即可解決.【詳解】因為,,所以在中,邊上的中線等于的一半,所以.因為,所以可設,,則,解得,所以,由雙曲線的定義得,所以雙曲線的離心率故選:A9、B【解析】對于①,由判斷,對于②,利用基本不等式可判斷,對于③,以為圓心,2為半徑的圓的面積與曲線圍成的面積進行比較即可,對于④,將和聯(lián)立,求解出兩曲線的切點,從而可判斷【詳解】對于①,由,得異號,方程(xy<0)關(guān)于原點及y=x對稱,所以方程(xy<0)表示的曲線在第二和第四象限,所以①正確,對于②,因為,所以,所以,所以,所以由曲線的對稱性可知曲線C上任一點到坐標原點0的距離都不超過2,所以②正確,對于③,由②可知曲線C上到原點的距離不超過2,而以為圓心,2為半徑的圓的面積為,所以曲線C構(gòu)成的四葉玫瑰線面積小于4π,所以③錯誤,對于④,將和聯(lián)立,解得,所以可得圓與曲線C相切于點,,,,而點(1,1)不滿足曲線方程,所以曲線在第一象限不經(jīng)過任何整數(shù)點,由曲線的對稱性可知曲線在其它象限也不經(jīng)過任何整數(shù)點,所以曲線C上只有1個整點(0,0),所以④錯誤,故選:B10、D【解析】由題設易知上恒成立,而在上,討論、,結(jié)合導數(shù)研究的最值,由不等式恒成立求的取值范圍.【詳解】由時,在上;由時,在上遞減,值域為;令且,則,當時,,即遞增,值域為,滿足題設;當時,在上,即遞減,在上,即遞增,此時值域為;當,即時存在,而在中,此時,不合題設;所以,此時要使的不等式恒成立,只需,即,可得;綜上,關(guān)于的不等式恒成立,則的取值范圍為.故選:D【點睛】關(guān)鍵點點睛:由題設易知上,只需在上恒有即可.11、B【解析】由三視圖還原原幾何體,確定幾何體的結(jié)構(gòu),計算各面面積可得【詳解】由三視圖,原幾何體是三棱錐,平面,,尺寸見三視圖,,,故選:B12、C【解析】線性規(guī)劃問題,作出可行域后,根據(jù)幾何意義求解【詳解】作出可行域如圖所示,,數(shù)形結(jié)合知過時取最小值故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設出直線的方程為,代入拋物線方程,消去,可得關(guān)于的二次方程,運用韋達定理及拋物線的定義,化簡計算可求解.【詳解】拋物線C:y2=8x的焦點為,設以為圓心的圓的半徑為,可知,,設,直線的方程為,則,代入拋物線方程,可得,即有,,,,即,所以.故答案為:14、【解析】由題意分析為直角三角形,得到關(guān)于a、c的齊次式,即可求出離心率.【詳解】設,則.由橢圓的定義可知:,所以.所以因軸,所以為直角三角形,由勾股定理得:,即,即,所以離心率.故答案為:15、8【解析】利用“1”代換,結(jié)合基本不等式求解.【詳解】因為,,所以,當且僅當,即時等號成立,所以當時,取得最小值8.故答案為:8.16、【解析】由奇函數(shù)的定義可得,代入解析式即可得解.【詳解】函數(shù)為奇函數(shù),當時,,所以.故答案為-1.【點睛】本題主要考查了奇函數(shù)的求值問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)為定值【解析】(1)由題意可得解方程組求出,從而可得橢圓方程,(2)設直線AB:,,代入橢圓方程,消去,利用根與系數(shù)關(guān)系,再表示出直線AC的方程,從而可求出點Q的坐標,從而可表示出,然后化簡可得結(jié)論【小問1詳解】由題意得解得故橢圓C的方程為;【小問2詳解】設直線AB:,,聯(lián)立消去y得,設,,得,,因為點C與點B關(guān)于x軸對稱,所以,所以直線AC的斜率為,直線AC的方程,令,解得可得,所以,因為,所以,所以為定值【點睛】關(guān)鍵點點睛:此題考查橢圓方程的求法,考查直線與橢圓的位置關(guān)系,解題的關(guān)鍵是將直線AB的方程代入橢圓方程中化簡,利用根與系數(shù)關(guān)系,結(jié)合已知條件表示出直線AC的方程,從而可求出點Q的坐標,考查計算能力,屬于中檔題18、(1)證明見解析(2)證明見解析【解析】(1)可根據(jù)已知的與的遞推關(guān)系,利用求解出數(shù)列的首項,然后當時,遞推做差,利用消掉,即可得到與之間的關(guān)系,從而完成證明;(2)利用第(1)問求解出的數(shù)列的通項公式,帶入到中,再使用錯位相減法進行求和,根據(jù)最后計算的結(jié)果與比較即可完成證明.【小問1詳解】由題意得,當時,,∴,當時,,∴,∵,∴,于是有,故數(shù)列是以3為首項,3為公比的等比數(shù)列.得證.【小問2詳解】由(1)可知,∴,,①,②,②?①得:,∴,∵,故,∴得證.19、(1)證明見解析,是鱉臑,四個面的直角分別為∠DEB,∠DEF,∠EFB,∠DFB(2)4(3)【解析】(1)由直線與直線,直線與平面的垂直的轉(zhuǎn)化證明得出PB⊥EF,DE∩FE=E,所以PB⊥平面DEF,即可判斷DE⊥平面PBC,PB⊥平面DEF,可知四面體BDEF的四個面都是直角三角形,確定直角即可;(2)PD是陽馬P?ABCD的高,DE是鱉臑D?BCE的高,BC⊥CE,,由此能求出的值(3)根據(jù)公理2得出DG是平面DEF與平面ACBD的交線.利用直線與平面的垂直判斷出DG⊥DF,DG⊥DB,根據(jù)平面角的定義得出∠BDF是面DEF與面ABCD所成二面角的平面角,轉(zhuǎn)化到直角三角形求解即可【小問1詳解】因為PD⊥底面ABCD,所以PD⊥BC,由底面ABCD為長方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面PCD.而DE?平面PDC,所以BC⊥DE又因為PD=CD,點E是PC的中點,所以DE⊥PC而PC∩CB=C,所以DE⊥平面PBC.而PB?平面PBC,所以PB⊥DE又PB⊥EF,DE∩FE=E,所以PB⊥平面DEF由DE⊥平面PBC,PB⊥平面DEF,可知四面體BDEF的四個面都是直角三角形,即四面體BDEF是一個鱉臑,其四個面的直角分別為∠DEB,∠DEF,∠EFB,∠DFB;【小問2詳解】由已知,PD是陽馬P?ABCD的高,∴,由(Ⅰ)知,,在Rt△PDC中,∵PD=CD,點E是PC的中點,∴,∴【小問3詳解】如圖所示,在面BPC內(nèi),延長BC與FE交于點G,則DG是平面DEF與平面ABCD的交線由(1)知,PB⊥平面DEF,所以PB⊥DG又因為PD⊥底面ABCD,所以PD⊥DG.而PD∩PB=P,所以DG⊥平面PBD所以DG⊥DF,DG⊥DB故∠BDF是面DEF與面ABCD所成二面角的平面角,設PD=DC=1,BC=λ,有,在Rt△PDB中,由DF⊥PB,得,則,解得所以故當面DEF與面ABCD所成二面角的大小為時,20、(1)(2)或【解析】(1)根據(jù)點到直線的距離公式求出半徑,即可得到圓C的標方程;(2)根據(jù)弦長公式可求出圓心C到直線的距離,再根據(jù)點到直線的距離公式結(jié)合分類討論思想即可求出【小問1詳解】設圓C的半徑為r,∵C與l相切,∴,∴圓C的標準方程為【小問2詳解】由可得圓心C到直線的距離∴當?shù)男甭什淮嬖跁r,其方程為,此時圓心到的距離為3,符合條件;當?shù)男甭蚀嬖跁r
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度現(xiàn)代農(nóng)業(yè)科技推廣與應用合作協(xié)議4篇
- 2025年中國大底銑平機行業(yè)市場發(fā)展前景及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 2025年海棉針織衫行業(yè)深度研究分析報告
- 2025年度產(chǎn)業(yè)園企業(yè)入駐產(chǎn)業(yè)園區(qū)基礎(chǔ)設施建設合作協(xié)議4篇
- 2025年燈塔市場分析報告
- 2025年履帶式挖掘機項目可行性研究報告
- 2025年布膠鞋項目可行性研究報告
- 2025年模具裝飾紋雕刻行業(yè)深度研究分析報告
- 2024-2025年中國即時通信行業(yè)競爭格局分析及投資規(guī)劃研究報告
- 2025年祛風通絡酒行業(yè)深度研究分析報告
- 安徽省淮南四中2025屆高二上數(shù)學期末統(tǒng)考模擬試題含解析
- 保險專題課件教學課件
- 牛津上海版小學英語一年級上冊同步練習試題(全冊)
- 室上性心動過速-醫(yī)學課件
- 建設工程法規(guī)及相關(guān)知識試題附答案
- 中小學心理健康教育課程標準
- 四年級上冊脫式計算400題及答案
- 新課標人教版小學數(shù)學六年級下冊集體備課教學案全冊表格式
- 人教精通版三年級英語上冊各單元知識點匯總
- 教案:第三章 公共管理職能(《公共管理學》課程)
- 諾和關(guān)懷俱樂部對外介紹
評論
0/150
提交評論