版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年河北省衡水市景縣梁集中學高二上數(shù)學期末綜合測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列是以1為首項,2為公差的等差數(shù)列,是以1為首項,2為公比的等比數(shù)列,設,,則當時,n的最大值是()A.8 B.9C.10 D.112.下列命題中,結(jié)論為真命題的組合是()①“”是“直線與直線相互垂直”的充分而不必要條件②若命題“”為假命題,則命題一定是假命題③是的必要不充分條件④雙曲線被點平分的弦所在的直線方程為⑤已知過點的直線與圓的交點個數(shù)有2個.A.①③④ B.②③④C.①③⑤ D.①②⑤3.已知圓與圓外切,則()A. B.C. D.4.執(zhí)行如圖的程序框圖,輸出的S的值為()A. B.0C.1 D.25.直線被橢圓截得的弦長是A. B.C. D.6.已知拋物線C:,則過拋物線C的焦點,弦長為整數(shù)且不超過2022的直線的條數(shù)是()A.4037 B.4044C.2019 D.20227.已知球O的半徑為2,球心到平面的距離為1,則球O被平面截得的截面面積為()A. B.C. D.8.二次方程的兩根為2,,那么關(guān)于的不等式的解集為()A.或 B.或C. D.9.某高中從3名男教師和2名女教師中選出3名教師,派到3個不同的鄉(xiāng)村支教,要求這3名教師中男女都有,則不同的選派方案共有()種A.9 B.36C.54 D.10810.在區(qū)間內(nèi)隨機取一個數(shù)則該數(shù)滿足的概率為()A. B.C. D.11.已知等差數(shù)列中,,則()A.15 B.30C.45 D.6012.動點P,Q分別在拋物線和圓上,則的最小值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.瑞士數(shù)學家歐拉(Euler)1765年在所著的《三角形的幾何學》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知的頂點,,,則歐拉線的方程為______14.已知數(shù)列的通項公式為,,設是數(shù)列的前n項和,若對任意都成立,則實數(shù)的取值范圍是__________.15.已知向量,且,則實數(shù)________________16.若直線與函數(shù)的圖象有三個交點,則實數(shù)a的取值范圍是_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)在處取得極值7(1)求的值;(2)求函數(shù)在區(qū)間上的最大值18.(12分)已知橢圓的左、右焦點分別為,,且橢圓過點,離心率,為坐標原點,過且不平行于坐標軸的動直線與有兩個交點,,線段的中點為.(1)求的標準方程;(2)記直線斜率為,直線的斜率為,證明:為定值;(3)軸上是否存在點,使得為等邊三角形?若存在,求出點的坐標;若不存在,請說明理由.19.(12分)若是雙曲線的兩個焦點.(1)若雙曲線上一點到它的一個焦點的距離等于10,求點到另一個焦點距離;(2)如圖若是雙曲線左支上一點,且,求的面積.20.(12分)已知三角形的內(nèi)角所對的邊分別為,且C為鈍角.(1)求cosA;(2)若,,求三角形的面積.21.(12分)如圖,在四棱錐中,平面平面,底面是菱形,E為的中點(1)證明:(2)已知,求二面角的余弦值22.(10分)已知函數(shù).(1)若,求函數(shù)在處的切線方程;(2)討論函數(shù)在上的單調(diào)性.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先求出數(shù)列和的通項公式,然后利用分組求和求出,再對進行賦值即可求解.【詳解】解:因為數(shù)列是以1為首項,2為公差的等差數(shù)列所以因為是以1為首項,2為公比的等比數(shù)列所以由得:當時,即當時,當時,所以n的最大值是.故選:B.【點睛】關(guān)鍵點睛:本題的關(guān)鍵是利用分組求和求出,再通過賦值法即可求出使不等式成立的的最大值.2、C【解析】求出兩直線垂直時m值判斷①;由復合命題真值表可判斷②;化簡不等式結(jié)合充分條件、必要條件定義判斷③;聯(lián)立直線與雙曲線的方程組成的方程組驗證判斷④;判定點與圓的位置關(guān)系判斷⑤作答.【詳解】若直線與直線相互垂直,則,解得或,則“”是“直線與直線相互垂直”的充分而不必要條件,①正確;命題“”為假命題,則與至少一個是假命題,不能推出一定是假命題,②不正確;,,則是的必要不充分條件,③正確;由消去y并整理得:,,即直線與雙曲線沒有公共點,④不正確;點在圓上,則直線與圓至少有一個公共點,而過點與圓相切的直線為,直線不包含,因此,直線與圓相交,有兩個交點,⑤正確,所以所有真命題的序號是①③⑤.故選:C3、D【解析】根據(jù)兩圓外切關(guān)系,圓心距離等于半徑的和列方程求參數(shù).【詳解】由題設,兩圓圓心分別為、,半徑分別為1、r,∴由外切關(guān)系知:,可得.故選:D.4、A【解析】直接求出的值即可.【詳解】解:由題得,程序框圖就是求,由于三角函數(shù)的最小正周期為,,,所以.故選:A5、A【解析】直線y=x+1代入,得出關(guān)于x的二次方程,求出交點坐標,即可求出弦長【詳解】將直線y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直線y=x+1被橢圓x2+4y2=8截得的弦長為故選A【點睛】本題查直線與橢圓的位置關(guān)系,考查弦長的計算,屬于基礎(chǔ)題6、A【解析】根據(jù)已知條件,結(jié)合拋物線的性質(zhì),先求出過焦點的最短弦長,再結(jié)合拋物線的對稱性,即可求解【詳解】∵拋物線C:,即,由拋物線的性質(zhì)可得,過拋物線焦點中,長度最短的為垂直于y軸的那條弦,則過拋物線C的焦點,長度最短的弦的長為,由拋物線的對稱性可得,弦長在5到2022之間的有共有條,故弦長為整數(shù)且不超過2022的直線的條數(shù)是故選:A7、B【解析】根據(jù)球的性質(zhì)可求出截面圓的半徑即可求解.【詳解】由球的性質(zhì)可知,截面圓的半徑為,所以截面的面積.故選:B8、B【解析】根據(jù),確定二次函數(shù)的圖象開口方向,再由二次方程的兩根為2,,寫出不等式的解集.【詳解】因為二次方程的兩根為2,,又二次函數(shù)的圖象開口向上,所以不等式的解集為或,故選:B9、C【解析】根據(jù)給定條件利用排列并結(jié)合排除法列式計算作答.【詳解】從含有3名男教師和2名女教師的5名教師中任選3名教師,派到3個不同的鄉(xiāng)村支教,不同的選派方案有種,選出3名教師全是男教師的不同的選派方案有種,所以3名教師中男女都有的不同的選派方案共有種故選:C10、C【解析】求解不等式,利用幾何概型的概率計算公式即可容易求得.【詳解】求解不等式可得:,由幾何概型的概率計算公式可得:在區(qū)間內(nèi)隨機取一個數(shù)則該數(shù)滿足的概率為.故選:.11、D【解析】根據(jù)等差數(shù)列的性質(zhì),可知,從而可求出結(jié)果.【詳解】解:根據(jù)題意,可知等差數(shù)列中,,則,所以.故選:D.12、B【解析】設,根據(jù)兩點間距離公式,先求得P到圓心的最小距離,根據(jù)圓的幾何性質(zhì),即可得答案.【詳解】設,圓化簡為,即圓心為(0,4),半徑為,所以點P到圓心的距離,令,則,令,,為開口向上,對稱軸為的拋物線,所以的最小值為,所以,所以的最小值為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)給定信息,利用三角形重心坐標公式求出的重心,再結(jié)合對稱性求出的外心,然后求出歐拉線的方程作答.【詳解】因的頂點,,,則的重心,顯然的外心在線段AC中垂線上,設,由得:,解得:,即點,直線,化簡整理得:,所以歐拉線的方程為.故答案:14、【解析】化簡數(shù)列將問題轉(zhuǎn)化為不等式恒成立問題,再對n分奇數(shù)和偶數(shù)進行討論,分別求解出的取值范圍,最后綜合得出結(jié)果.【詳解】根據(jù)題意,,.①當n是奇數(shù)時,,即對任意正奇數(shù)n恒成立,當時,有最小值1,所以.②當n是正偶數(shù)時,,即,又,故對任意正偶數(shù)n都成立,又隨n增大而增大,當時,有最小值,即,綜合①②可知.故答案為:.15、【解析】,利用向量的數(shù)量積的坐標運算即可.【詳解】,則,解得故答案為:16、【解析】求導函數(shù),分析導函數(shù)的符號,得出原函數(shù)的單調(diào)性和極值,由此可求得答案.【詳解】解:因為函數(shù),則,所以當或時,,函數(shù)單調(diào)遞減;當時,,函數(shù)單調(diào)遞增,所以當時,函數(shù)取得極小值,當時,函數(shù)取得極大值,因為直線與函數(shù)的圖象有三個交點,所以實數(shù)a的取值范圍是,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)先對函數(shù)求導,根據(jù)題中條件,列出方程組求解,即可得出結(jié)果;(2)先由(1)得到,導數(shù)的方法研究其單調(diào)性,進而可求出最值.【詳解】(1)因為,所以,又函數(shù)在處取得極值7,,解得;,所以,由得或;由得;滿足題意;(2)又,由(1)得在上單調(diào)遞增,在上單調(diào)遞減,因此【點睛】方法點睛:該題考查的是有關(guān)利用導數(shù)研究函數(shù)的問題,解題方法如下:(1)先對函數(shù)求導,根據(jù)題意,結(jié)合函數(shù)在某個點處取得極值,導數(shù)為0,函數(shù)值為極值,列出方程組,求得結(jié)果;(2)將所求參數(shù)代入,得到解析式,利用導數(shù)研究其單調(diào)性,得到其最大值.18、(1);(2)證明見解析;(3)不存在,理由見解析.【解析】(1)由橢圓所過點及離心率,列方程組,再求解即得;(2)設出點A,B坐標并列出它們滿足的關(guān)系,利用點差法即可作答;(3)設直線的方程,聯(lián)立直線與橢圓的方程,借助韋達定理求得,,再結(jié)合為等邊三角形的條件即可作答.【詳解】(1)顯然,半焦距c有,即,則,所以橢圓的標準方程為;(2)設,,,,由(1)知,,兩式相減得,即,而弦的中點,則有,所以;(3)假定存在符合要求的點P,由(1)知,設直線的方程為,由得:,則,,于是得,從而得點,,因為等邊三角形,即有,,因此,,,從而得,整理得,無解,所以在y軸上不存在點,使得為等邊三角形.19、(1)(2)【解析】(1)利用雙曲線定義,根據(jù)點到一個焦點的距離求點到另一個焦點的距離即可;(2)先根據(jù)定義得到,兩邊平方求得,即證,,再計算直角三角形面積即可.【小問1詳解】是雙曲線的兩個焦點,則,點M到它的一個焦點的距離等于10,設點到另一個焦點的距離為,則由雙曲線定義可知,,解得或(舍去)即點到另一個焦點的距離為;【小問2詳解】P是雙曲線左支上的點,則,則,而,所以,即,所以為直角三角形,,所以.20、(1)(2)【解析】(1)由正弦定理邊化角,可求得角的正弦,由同角關(guān)系結(jié)合條件可得答案.(2)由(1),由余弦定理,求出邊的長,進一步求得面積【小問1詳解】因為,由正弦定理得因,所以.因為角為鈍角,所以角為銳角,所以【小問2詳解】由(1),由余弦定理,得,所以,解得或,不合題意舍去,故的面積為=21、(1)詳見解析(2)【解析】(1)利用垂直關(guān)系,轉(zhuǎn)化為證明線面垂直,即可證明線線垂直;(2)利用垂直關(guān)系,建立空間直角坐標系,分別求平面和平面的法向量,利用公式,即可求解二面角的余弦值.【小問1詳解】如圖,取的中點,連結(jié),,,因為,所以,因為平面平面,平面平面,所以平面,且平面,所以,又因為底面時菱形,所以,又因為點分別為的中點,所以,所以,且,所以平面,又因為平面,所以;【小問2詳解】由(1)可知,平面,連結(jié),因為,,點為的中點,所以,則兩兩垂直,以點為坐標原點,建立空間直角坐標系,如圖所示:則,,,所以,,,,,,所以,,,設平面的法向量為,則,令,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 護士個人離職報告
- 電力專業(yè)練習卷含答案
- 隱患判定標準習題復習測試有答案
- 大學生珍愛生命演講稿6篇
- 電子商務實習報告模板集錦七篇
- 省級產(chǎn)業(yè)園區(qū)基礎(chǔ)設施項目環(huán)境影響評估
- 2024年精簡型服裝銷售協(xié)議模板版B版
- 2024年標準鉆機施工承包合同范本版B版
- 2024年股權(quán)轉(zhuǎn)讓合同轉(zhuǎn)讓標的股權(quán)比例與轉(zhuǎn)讓價格
- 2024年股權(quán)代運營框架協(xié)議3篇
- 公共體育(三)學習通課后章節(jié)答案期末考試題庫2023年
- 現(xiàn)代操作系統(tǒng)教程(慕課版)-課后習題答案1-8章全帶原題
- PCS-PC簡單使用方法
- 高校人力資源管理系統(tǒng)
- 關(guān)于更換公務用車的請示
- 國外發(fā)達國家中水回用現(xiàn)狀
- 室分工程施工組織設計
- 遠洋漁船項目可行性研究報告模板
- 塔塔里尼調(diào)壓器FLBM5介紹.ppt
- 相親相愛一家人簡譜
- CCC例行檢驗和確認檢驗程序
評論
0/150
提交評論