2024屆北京市北師大二附中高二上數(shù)學(xué)期末檢測試題含解析_第1頁
2024屆北京市北師大二附中高二上數(shù)學(xué)期末檢測試題含解析_第2頁
2024屆北京市北師大二附中高二上數(shù)學(xué)期末檢測試題含解析_第3頁
2024屆北京市北師大二附中高二上數(shù)學(xué)期末檢測試題含解析_第4頁
2024屆北京市北師大二附中高二上數(shù)學(xué)期末檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆北京市北師大二附中高二上數(shù)學(xué)期末檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知、是橢圓和雙曲線的公共焦點(diǎn),是它們的一個公共點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,則()A.2 B.3C.4 D.52.若數(shù)列的通項(xiàng)公式為,則該數(shù)列的第5項(xiàng)為()A. B.C. D.3.已知雙曲線(,)的左、右焦點(diǎn)分別為,,.若雙曲線M的右支上存在點(diǎn)P,使,則雙曲線M的離心率的取值范圍為()A. B.C. D.4.執(zhí)行如圖所示的程序框圖,若輸出的的值為,則輸入的的值可能為()A.96 B.97C.98 D.995.正方體的表面積為,則正方體外接球的表面積為(

)A. B.C. D.6.若圓與圓相切,則的值為()A. B.C.或 D.或7.某家大型超市近10天的日客流量(單位:千人次)分別為:2.5、2.8、4.4、3.6.下列圖形中不利于描述這些數(shù)據(jù)的是()A.散點(diǎn)圖 B.條形圖C.莖葉圖 D.扇形圖8.如圖,是函數(shù)的部分圖象,且關(guān)于直線對稱,則()A. B.C. D.9.用反證法證明“若a,b∈R,,則a,b不全為0”時,假設(shè)正確的是()A.a,b中只有一個為0 B.a,b至少一個不為0C.a,b至少有一個為0 D.a,b全為010.已知等比數(shù)列的前n項(xiàng)和為,且,則()A.20 B.30C.40 D.5011.已知點(diǎn),是橢圓:的左、右焦點(diǎn),是的左頂點(diǎn),點(diǎn)在過且斜率為的直線上,為等腰三角形,且,則的離心率為()A. B.C. D.12.已知雙曲線,其中一條漸近線與x軸的夾角為,則雙曲線的漸近線方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)是數(shù)列的前項(xiàng)和,且,,則__________14.已知數(shù)列都是等差數(shù)列,公差分別為,數(shù)列滿足,則數(shù)列的公差為__________15.已知拋物線C:,經(jīng)過點(diǎn)P(4,1)的直線l與拋物線C相交于A,B兩點(diǎn),且點(diǎn)P恰為AB的中點(diǎn),F(xiàn)為拋物線的焦點(diǎn),則______16.在某次海軍演習(xí)中,已知甲驅(qū)逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護(hù)衛(wèi)艦在甲驅(qū)逐艦的正西方向,若測得乙護(hù)衛(wèi)艦在航母的南偏西45°方向,則甲驅(qū)逐艦與乙護(hù)衛(wèi)艦的距離為___________海里.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).其中e為然對數(shù)的底數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若,討論函數(shù)的零點(diǎn)個數(shù)18.(12分)在平面直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和等于4,設(shè)點(diǎn)的軌跡為曲線(1)求曲線的方程;(2)設(shè)直線與交于兩點(diǎn),為何值時?19.(12分)直線:和:(1)若兩直線垂直,求m的值;(2)若兩直線平行,求平行線間的距離20.(12分)已知,(1)當(dāng)時,求函數(shù)的單調(diào)遞減區(qū)間;(2)當(dāng)時,,求實(shí)數(shù)a的取值范圍21.(12分)命題存在,使得;命題對任意的,都有(1)若命題p為真時,求實(shí)數(shù)a的取值范圍;若命題q為假時,求實(shí)數(shù)a的取值范圍;(2)如果命題為真命題,命題為假命題,求實(shí)數(shù)a的取值范圍22.(10分)如圖,在三棱錐中,側(cè)面為等邊三角形,,,平面平面,為的中點(diǎn).(1)求證:;(2)若,求二面角的大小.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】依據(jù)橢圓和雙曲線定義和題給條件列方程組,得到關(guān)于橢圓的離心率和雙曲線的離心率的關(guān)系式,即可求得的值.【詳解】設(shè)橢圓的長軸長為,雙曲線的實(shí)軸長為,令,不妨設(shè)則,解之得代入,可得整理得,即,也就是故選:C2、C【解析】直接根據(jù)通項(xiàng)公式,求;【詳解】,故選:C3、A【解析】利用三角形正弦定理結(jié)合,用a,c表示出,再由點(diǎn)P的位置列出不等式求解即得.【詳解】依題意,點(diǎn)P不與雙曲線頂點(diǎn)重合,在中,由正弦定理得:,因,于是得,而點(diǎn)P在雙曲線M的右支上,即,從而有,點(diǎn)P在雙曲線M的右支上運(yùn)動,并且異于頂點(diǎn),于是有,因此,,而,整理得,即,解得,又,故有,所以雙曲線M的離心率的取值范圍為.故選:A4、D【解析】根據(jù)程序框圖得出的變換規(guī)律后求解【詳解】當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,可得輸出的T關(guān)于t的變換周期為4,而,故時,輸出的值為,故選:D5、B【解析】由正方體表面積求得棱長,再求得正方體的對角線長,即為外接球的直徑,從而可得球表面積【詳解】設(shè)正方體棱長為,由得,正方體對角線長,所以其外接球半徑為,球表面積為故選:B6、C【解析】分類討論:當(dāng)兩圓外切時,圓心距等于半徑之和;當(dāng)兩圓內(nèi)切時,圓心距等于半徑之差,即可求解.【詳解】圓的圓心為,半徑為,圓的圓心為,半徑為.①當(dāng)兩圓外切時,有,此時.②當(dāng)兩圓內(nèi)切時,有,此時.綜上,當(dāng)時兩圓外切;當(dāng)時兩圓內(nèi)切.故選:C【點(diǎn)睛】本題考查了圓與圓的位置關(guān)系,解答兩圓相切問題時易忽略兩圓相切包括內(nèi)切和外切兩種情況.解答時注意分類討論,屬于基礎(chǔ)題.7、A【解析】根據(jù)數(shù)據(jù)的特征以及各統(tǒng)計圖表的特征分析即可;【詳解】解:莖葉圖、條形圖、扇形圖均能將數(shù)據(jù)描述出來,并且能夠體現(xiàn)出數(shù)據(jù)的變化趨勢;散點(diǎn)圖表示因變量隨自變量而變化的大致趨勢,故用來描述該超市近10天的日客流量不是很合適;故選:A8、C【解析】先根據(jù)條件確定為函數(shù)的極大值點(diǎn),得到的值,再根據(jù)圖像的單調(diào)性和導(dǎo)數(shù)幾何意義得到和的正負(fù)即可判斷.【詳解】根據(jù)題意得,為函數(shù)部分函數(shù)的極大值點(diǎn),所以,又因?yàn)楹瘮?shù)在單調(diào)遞增,由圖像可知處切線斜率為銳角,根據(jù)導(dǎo)數(shù)的幾何意義,所以,又因?yàn)楹瘮?shù)在單調(diào)遞增,由圖像可知處切線斜率為鈍角,根據(jù)導(dǎo)數(shù)的幾何意義所以.即.故選:C.9、D【解析】把要證的結(jié)論否定之后,即得所求的反設(shè)【詳解】由于“a,b不全為0”的否定為:“a,b全為0”,所以假設(shè)正確的是a,b全為0.故選:D10、B【解析】利用等比數(shù)列的前n項(xiàng)和公式即可求解.【詳解】設(shè)等比數(shù)列的首項(xiàng)為,公比為,則,由得,即,解得或(舍),且代入①得,則,所以.故選:B.11、D【解析】設(shè),先求出點(diǎn),得,化簡即得解【詳解】由題意可知橢圓的焦點(diǎn)在軸上,如圖所示,設(shè),則,∵為等腰三角形,且,∴.過作垂直軸于點(diǎn),則,∴,,即點(diǎn).∵點(diǎn)在過點(diǎn)且斜率為的直線上,∴,解得,∴.故選:D【點(diǎn)睛】方法點(diǎn)睛:求橢圓的離心率常用的方法有:(1)公式法(求出橢圓的代入離心率的公式即得解);(2)方程法(通過已知找到關(guān)于離心率的方程解方程即得解).12、C【解析】由已知條件計算可得,即得到結(jié)果.【詳解】由雙曲線,可知漸近線方程為,又雙曲線的一條漸近線與x軸的夾角為,故,即漸近線方程為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】原式為,整理為:,即,即數(shù)列是以-1為首項(xiàng),-1為公差的等差的數(shù)列,所以,即.【點(diǎn)睛】這類型題使用的公式是,一般條件是,若是消,就需當(dāng)時構(gòu)造,兩式相減,再變形求解;若是消,就需在原式將變形為:,再利用遞推求解通項(xiàng)公式.14、##【解析】利用等差數(shù)列的定義即得.【詳解】∵數(shù)列都是等差數(shù)列,公差分別為,數(shù)列滿足,∴.故答案為:.15、9【解析】過A、、作準(zhǔn)線的垂線且分別交準(zhǔn)線于點(diǎn)、、,根據(jù)拋物線的定義可知,由梯形的中位線的性質(zhì)得出,進(jìn)而可求出的結(jié)果.【詳解】由拋物線,可知,則,所以拋物線的焦點(diǎn)坐標(biāo)為,如圖,過點(diǎn)A作垂直于準(zhǔn)線交準(zhǔn)線于,過點(diǎn)作垂直于準(zhǔn)線交準(zhǔn)線于,過點(diǎn)作垂直于準(zhǔn)線交準(zhǔn)線于,由拋物線的定義可得,再根據(jù)為線段的中點(diǎn),而四邊形為梯形,由梯形的中位線可知,則,所以.故答案為:9.16、【解析】利用正弦定理求得甲驅(qū)逐艦與乙護(hù)衛(wèi)艦的距離.【詳解】,設(shè)甲乙距離,由正弦定理得.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和;(2)當(dāng)時,無零點(diǎn);當(dāng)時,有1個零點(diǎn);當(dāng)時,有2個零點(diǎn).【解析】(1)求導(dǎo),令導(dǎo)數(shù)大于零求增區(qū)間,令導(dǎo)數(shù)小于零求減區(qū)間;(2)求導(dǎo)數(shù),分、、a>2討論函數(shù)f(x)單調(diào)性和零點(diǎn)即可.【小問1詳解】當(dāng)時,,易知定義域?yàn)镽,,當(dāng)時,;當(dāng)或時,故的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和;【小問2詳解】當(dāng)時,x正0負(fù)0正單增極大值單減極小值單增當(dāng)時,恒成立,∴;當(dāng)時,①當(dāng)時,,∴無零點(diǎn);②當(dāng)時,,∴有1個零點(diǎn);③當(dāng)時,,又當(dāng)時,單調(diào)遞增,,∴有2個零點(diǎn);綜上所述:當(dāng)時,無零點(diǎn);當(dāng)時,有1個零點(diǎn);當(dāng)時,有2個零點(diǎn)【點(diǎn)睛】結(jié)論點(diǎn)睛:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結(jié)合思想的應(yīng)用18、(1);(2).【解析】(1)由題意可得:點(diǎn)的軌跡為橢圓,設(shè)標(biāo)準(zhǔn)方程為:,則,,,解出可得橢圓的標(biāo)準(zhǔn)方程(2)設(shè),,直線方程與橢圓聯(lián)立,化為:,恒成立,由,可得,把根與系數(shù)的關(guān)系代入解得【詳解】解:(1)由題意可得:點(diǎn)的軌跡為橢圓,設(shè)標(biāo)準(zhǔn)方程為:,則,,,可得橢圓的標(biāo)準(zhǔn)方程為:(2)設(shè),,聯(lián)立,化為:,恒成立,,,,,,解得.滿足當(dāng)時,能使【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交弦長問題、數(shù)量積運(yùn)算性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計算能力,屬于難題19、(1);(2)【解析】(1)由直線一般方程的垂直公式,即得解;(2)由直線一般方程的平行公式,求得,再由平行線的距離公式,即得解.【小問1詳解】∵兩直線垂直,∴,解得【小問2詳解】∵兩直線平行,∴,解得或1,經(jīng)過驗(yàn)證時兩條直線重合,舍去.∴可得:直線:,:∴兩直線間的距離20、(1)(2)【解析】(1)求出函數(shù)的導(dǎo)函數(shù),再解導(dǎo)函數(shù)的不等式,即可求出函數(shù)的單調(diào)遞減區(qū)間;(2)依題意可得當(dāng)時,當(dāng)時,顯然成立,當(dāng)時只需,參變分離得到,令,,利用導(dǎo)數(shù)說明函數(shù)的單調(diào)性,即可求出參數(shù)的取值范圍;【小問1詳解】解:當(dāng)時定義域?yàn)?,所以,令,解得或,令,解得,所以的單調(diào)遞減區(qū)間為;【小問2詳解】解:由,即,即,當(dāng)時顯然成立,當(dāng)時,只需,即,令,,則,所以在上單調(diào)遞減,所以,所以,故實(shí)數(shù)的取值范圍為.21、(1)p為真時或,q為假時;(2){或}.【解析】(1)p為真應(yīng)用判別式求參數(shù)范圍;q為真,根據(jù)恒成立求參數(shù)范圍,再判斷q為假對應(yīng)的參數(shù)范圍.(2)由題設(shè)易得p、q一真一假,討論p、q的真假,結(jié)合(1)的結(jié)果求a的取值范圍【小問1詳解】若p真,則有實(shí)數(shù)根,∴,解得或若q為真,則,即故q為假時,實(shí)數(shù)a的取值范圍為【小問2詳解】∵命題真命題,命題為假命題,∴p,q一真一假,當(dāng)p真q假時,,可得當(dāng)p假q真時,,可得綜上,實(shí)數(shù)a取值范圍為或.22、(1)證明見解析(2)【解析】(1)取中點(diǎn),由面面垂直和線面垂直性質(zhì)可證得,結(jié)合,由線面垂直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論