版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年山西省范亭中學高二上數(shù)學期末預測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“,”的否定為()A., B.,C., D.,2.若圓的半徑為,則實數(shù)()A. B.-1C.1 D.3.數(shù)列滿足,,,則數(shù)列的前8項和為()A.25 B.26C.27 D.284.設是函數(shù)的導函數(shù),的圖象如圖所示,則的解集是()A. B.C. D.5.直線的傾斜角為()A B.C. D.6.記為等差數(shù)列的前n項和,有下列四個等式,甲:;乙:;丙:;?。海绻挥幸粋€等式不成立,則該等式為()A.甲 B.乙C.丙 D.丁7.為了了解某地區(qū)的名學生的數(shù)學成績,打算從中抽取一個容量為的樣本,現(xiàn)用系統(tǒng)抽樣的方法,需從總體中剔除個個體,在整個過程中,每個個體被剔除的概率和每個個體被抽取的概率分別為()A. B.C. D.8.已知命題:;:若,則,則下列判斷正確的是()A.為真,為真,為假 B.為真,為假,為真C.為假,為假,為假 D.為真,為假,為假9.為了調查全國人口的壽命,抽查了11個?。ㄊ校┑?500名城鎮(zhèn)居民,這2500名城鎮(zhèn)居民的壽命的全體是()A.總體 B.個體C.樣本 D.樣本容量10.已知,若,則的取值范圍為()A. B.C. D.11.已知梯形ABCD中,,,且對角線交于點E,過點E作與AB所在直線的平行線l.若AB和CD所在直線的方程分別是與,則直線l與CD所在直線的距離為()A.1 B.2C.3 D.412.已知數(shù)列為等差數(shù)列,則下列數(shù)列一定為等比數(shù)列的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如果圓錐的底面圓半徑為1,母線長為2,則該圓錐的側面積為___14.某商場對華為手機近28天的日銷售情況進行統(tǒng)計,得到如下數(shù)據(jù),t36811ym357利用最小二乘法得到日銷售量y(百部)與時間t(天)的線性回歸方程為,則表格中的數(shù)據(jù)___________.15.某個彈簧振子在振動過程中的位移y(單位:mm)與時間t(單位:s)之間的關系為,則當s時,彈簧振子的瞬時速度為_________mm/s.16.從1,2,3,4,5中任取兩個不同的數(shù),其中一個作為對數(shù)的底數(shù)a,另一個作為對數(shù)的真數(shù)b.則的概率為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角、、所對的邊分別為、、,且(1)求證;、、成等差數(shù)列;(2)若,的面積為,求的周長18.(12分)已知數(shù)列的首項為,且滿足.(1)求證:數(shù)列為等比數(shù)列;(2)設,記數(shù)列的前項和為,求,并證明:.19.(12分)已知橢圓的離心率為,點在橢圓上.(1)求橢圓的方程;(2)過點作軸的平行線交軸于點,過點的直線與橢圓交于兩個不同的點、,直線、與軸分別交于、兩點,若,求直線的方程;(3)在第(2)問條件下,點是橢圓上的一個動點,請問:當點與點關于軸對稱時的面積是否達到最大?并說明理由.20.(12分)在平面直角坐標系中,動點到點的距離等于點到直線的距離.(1)求動點的軌跡方程;(2)記動點的軌跡為曲線,過點的直線與曲線交于兩點,在軸上是否存在一點,使若存在,求出點的坐標;若不存在,請說明理由.21.(12分)已知曲線上任意一點滿足方程,(1)求曲線的方程;(2)若直線與曲線在軸左、右兩側的交點分別是,且,求的最小值.22.(10分)已知函數(shù)(1)判斷的零點個數(shù);(2)若對任意恒成立,求的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用含有一個量詞的命題的否定的定義求解.【詳解】因為命題“,”是全稱量詞命題,所以其否定是存在量詞命題,即為,,故選:A2、B【解析】將圓的方程化為標準方程,即可求出半徑的表達式,從而可求出的值.【詳解】由題意,圓的方程可化為,所以半徑為,解得.故選:B.【點睛】本題考查圓的方程,考查學生的計算求解能力,屬于基礎題.3、C【解析】根據(jù)通項公式及求出,從而求出前8項和.【詳解】當時,,當時,,當時,,當時,,當時,,當時,,則數(shù)列的前8項和為.故選:C4、C【解析】先由圖像分析出的正負,直接解不等式即可得到答案.【詳解】由函數(shù)的圖象可知,在區(qū)間上單調遞減,在區(qū)間(0,2)上單調遞增,即當時,;當x∈(0,2)時,.因為可化為或,解得:0<x<2或x<0,所以不等式的解集為.故選:C5、C【解析】設直線傾斜角為,則,再結合直線的斜率與傾斜角的關系求解即可.【詳解】設直線的傾斜角為,則,∵,所以.故選:C6、D【解析】分別假設甲、乙、丙、丁不成立,驗證得到答案【詳解】設數(shù)列的公差為,若甲不成立,則,由①,③可得,此時與②矛盾;A錯,若乙不成立,則,由①,③可得,此時;與②矛盾;B錯,若丙不成立,則,由①,③可得,此時;與②矛盾;C錯,若丁不成立,則,由①,③可得,此時;,D對,故選:D.7、D【解析】根據(jù)每個個體被抽取的概率都是相等的、被剔除的概率也都是相等的,分別由剔除的個數(shù)和抽取的樣本容量除以總體個數(shù)即可求解.【詳解】根據(jù)系統(tǒng)抽樣的定義和方法可知:每個個體被抽取的概率都是相等的,每個個體被剔除的概率也都是相等的,所以每個個體被剔除的概率為,每個個體被抽取的概率為,故選:D.8、D【解析】先判斷出命題,的真假,即可判斷.【詳解】因為成立,所以命題為真,由可得或,所以命題為假命題,所以為真,為假,為假.故選:D.9、C【解析】由樣本的概念即知.【詳解】由題意可知,這2500名城鎮(zhèn)居民的壽命的全體是樣本.10、C【解析】根據(jù)題意,由為原點到直線上點的距離的平方,再根據(jù)點到直線垂線段最短,即可求得范圍.【詳解】由,,視為原點到直線上點的距離的平方,根據(jù)點到直線垂線段最短,可得,所有的取值范圍為,故選:C.11、B【解析】先求得直線AB和CD之間的距離,再求直線l與CD所在直線的距離即可解決.【詳解】梯形ABCD中,,,且對角線交于點E,則有△與△相似,相似比為,則,點E到CD所在直線的距離為AB和CD所在直線距離的又AB和CD所在直線的距離為,則直線l與CD所在直線的距離為2故選:B12、A【解析】根據(jù)等比數(shù)列的定義判斷【詳解】設的公差是,即,顯然,且是常數(shù),是等比數(shù)列,若中一個為1,則,則不是等比數(shù)列,只要,,都不可能是等比數(shù)列,如,,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、2π【解析】由圓錐的側面積公式即可求解【詳解】由題意,圓錐底面周長為2π×1=2π,又母線長為2,所以圓錐的側面積故答案為:2π.14、1【解析】根據(jù)已知條件,求出,的平均值,再結合線性回歸方程過樣本中心,即可求解【詳解】解:由表中數(shù)據(jù)可得,,,線性回歸方程為,,解得故答案為:115、0【解析】根據(jù)題意得,進而根據(jù)導數(shù)幾何意義求解時的導函數(shù)值即可得答案.【詳解】解:因為,所以求導得,所以根據(jù)導數(shù)的幾何意義得該振子在時的瞬時速度為,故答案為:.16、##【解析】利用列舉法,結合古典概型概率計算公式以及對數(shù)的知識求得正確答案.【詳解】的所有可能取值為,,共種,滿足的為,,共種,所以的概率為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)利用正弦定理結合兩角和的正弦公式求出的值,結合角的取值范圍可求得角的值,可求得的值,即可證得結論成立;(2)利用三角形的面積公式可求得的值,結合余弦定理可求得的值,進而可求得的周長.【小問1詳解】證明:由正弦定理及,得,所以,,所以,,,則,所以,,又,,,因此,、、成等差數(shù)列.【小問2詳解】解:,,又,,故的周長為.18、(1)證明見解析(2),證明見解析【解析】(1)根據(jù)等比數(shù)列的定義證明;(2)由錯位相減法求得和,再由的單調性可證得不等式成立【小問1詳解】由得又,數(shù)列是以為首項,以為公比的等比數(shù)列.【小問2詳解】由(1)的結論有①②①②得:又為遞增數(shù)列,19、(1);(2);(3)當點與點關于軸對稱時,的面積達到最大,理由見解析.【解析】(1)設,可得出,,將點的坐標代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)分析可知直線的斜率存在,設直線的方程為,設點、,將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,由已知可得,結合韋達定理可求得的值,即可得出直線的方程;(3)設與直線平行且與橢圓相切的直線的方程為,將該直線方程與橢圓的方程聯(lián)立,由判別式為零可求得,分析可知當點為直線與橢圓的切點時,的面積達到最大,求出直線與橢圓的切點坐標,可得出結論.【小問1詳解】解:因為,設,則,,所以,橢圓的方程可表示為,將點的坐標代入橢圓的方程可得,解得,因此,橢圓的方程為.【小問2詳解】解:設線段的中點為,因為,則軸,故直線、的傾斜角互補,易知點,若直線軸,則、為橢圓短軸的兩個頂點,不妨設點、,則,,,不合乎題意.所以,直線的斜率存在,設直線的方程為,設點、,聯(lián)立,可得,,由韋達定理可得,,,,則,所以,解得,因此,直線的方程為.【小問3詳解】解:設與直線平行且與橢圓相切的直線的方程為,聯(lián)立,可得(*),,解得,由題意可知,當點為直線與橢圓的切點時,此時的面積取最大值,當時,方程(*)為,解得,此時,即點.此時,點與點關于軸對稱,因此,當點與點關于軸對稱時,的面積達到最大.【點睛】方法點睛:圓錐曲線中的最值問題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關結論來求最值;二是代數(shù)法,常將圓錐曲線的最值問題轉化為二次函數(shù)或三角函數(shù)的最值問題,然后利用基本不等式、函數(shù)的單調性或三角函數(shù)的有界性等求最值20、(1);(2)存在,.【解析】(1)利用拋物線的定義即求;(2)由題可設直線的方程為,利用韋達定理法結合條件可得,即得.【小問1詳解】因為動點到點的距離等于點到直線的距離,所以動點到點的距離和它到直線的距離相等,所以點的軌跡是以為焦點,以直線為準線的拋物線,設拋物線方程為,由,得,所以動點的軌跡方程為.【小問2詳解】由題意可知,直線的斜率不為0,故設直線的方程為,.聯(lián)立,得,恒成立,由韋達定理,得,,假設存在一點,滿足題意,則直線的斜率與直線的斜率滿足,即,所以,所以解得,所以存在一點,滿足,點的坐標為.21、(1)(2)8【解析】(1)根據(jù)雙曲線的定義即可得出答案;(2)可設直線的方程為,則直線的方程為,由,求得,同理求得,從而可求得的值,再結合基本不等式即可得出答案.【小問1詳解】解:設,則,等價于,曲線為以為焦點的雙曲線,且實軸長為2,焦距為,故曲線的方程為:;【小問2詳解】解:由題意可得直線的斜率存在且不為0,可設直線的方程為,則直線的方程為,由,得,所以,同理可得,,所以,,當且僅當時取等號,所以當時,取得最小值8.22、(1)個;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021年遼寧省沈陽市公開招聘警務輔助人員輔警筆試自考題1卷含答案
- 2022年黑龍江省大興安嶺地區(qū)公開招聘警務輔助人員輔警筆試自考題2卷含答案
- 大班幼兒園家長發(fā)言稿
- 黑龍江牡丹江市(2024年-2025年小學六年級語文)部編版能力評測((上下)學期)試卷及答案
- 《汽車營銷診斷報告》課件
- 2025年果蔬快速預冷裝置項目立項申請報告
- 廣東省韶關市(2024年-2025年小學六年級語文)部編版期末考試((上下)學期)試卷及答案
- 廣東省肇慶市(2024年-2025年小學六年級語文)統(tǒng)編版小升初模擬(上學期)試卷及答案
- 我愛讀書演講稿四篇
- 大一新生軍訓發(fā)言稿15篇
- 統(tǒng)編版語文四年級上冊《期末作文專項復習》 課件
- 2024年黑龍江省機場集團招聘筆試參考題庫含答案解析
- 食品從業(yè)人員安全學習培訓記錄
- 內(nèi)科季度護理質量分析課件
- 2024年安全生產(chǎn)月活動安全知識競賽題庫含答案
- 銷售回款專項激勵政策方案(地產(chǎn)公司)
- 孕產(chǎn)婦健康管理服務規(guī)范課件
- 生物系統(tǒng)建模與仿真課件
- 風電項目核準及開工行政審批流程(備案核準、施工許可)
- ××市××學校鞏固中等職業(yè)教育基礎地位專項行動實施方案參考提綱
- 教育培訓基地建設實施計劃方案
評論
0/150
提交評論