2023-2024學年山西省太原市迎澤區(qū)太原五中數(shù)學高二上期末檢測模擬試題含解析_第1頁
2023-2024學年山西省太原市迎澤區(qū)太原五中數(shù)學高二上期末檢測模擬試題含解析_第2頁
2023-2024學年山西省太原市迎澤區(qū)太原五中數(shù)學高二上期末檢測模擬試題含解析_第3頁
2023-2024學年山西省太原市迎澤區(qū)太原五中數(shù)學高二上期末檢測模擬試題含解析_第4頁
2023-2024學年山西省太原市迎澤區(qū)太原五中數(shù)學高二上期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年山西省太原市迎澤區(qū)太原五中數(shù)學高二上期末檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中國共產(chǎn)黨建黨100周年之際,廣安市某中學組織了“黨史知識競賽”活動,已知該校共有高中學生1000人,用分層抽樣的方法從該校高中學生中抽取一個容量為25的樣本參加活動,其中高二年級抽取了8人,則該校高二年級學生人數(shù)為()A.960 B.720C.640 D.3202.若拋物線的準線方程是,則拋物線的標準方程是()A. B.C. D.3.等軸雙曲線漸近線是()A. B.C. D.4.命題,,則為()A., B.,C., D.,5.△ABC兩個頂點坐標A(-4,0),B(4,0),它的周長是18,則頂點C的軌跡方程是()A. B.(y≠0)C. D.6.2021年6月17日9時22分,搭載神舟十二號載人飛船的長征二號F遙十二運載火箭,在酒泉衛(wèi)星發(fā)射中心點火發(fā)射.此后,神舟十二號載人飛船與火箭成功分離,進入預定軌道,并快速完成與“天和”核心艙的對接,聶海勝、劉伯明、湯洪波3名宇航員成為核心艙首批“入住人員”,并在軌駐留3個月,開展艙外維修維護,設備更換,科學應用載荷等一系列操作.已知神舟十二號飛船的運行軌道是以地心為焦點的橢圓,設地球半徑為R,其近地點與地面的距離大約是,遠地點與地面的距離大約是,則該運行軌道(橢圓)的離心率大約是()A. B.C. D.7.已知雙曲線,過其右焦點作漸近線的垂線,垂足為,延長交另一條漸近線于點A.已知為原點,且,則()A. B.C. D.8.圓:與圓:的位置關系是()A.內(nèi)切 B.外切C.相交 D.相離9.已知等差數(shù)列的前項和為,若,則()A B.C. D.10.已知焦點在軸上的雙曲線的一條漸近線方程為,則該雙曲線的離心率為()A. B.C.2 D.11.已知點,若直線與線段沒有公共點,則的取值范圍是()A. B.C. D.12.“趙爽弦圖”是我國古代數(shù)學的瑰寶,如圖所示,它是由四個全等的直角三角形和一個正方形構(gòu)成.現(xiàn)用4種不同的顏色(4種顏色全部使用)給這5個區(qū)域涂色,要求相鄰的區(qū)域不能涂同一種顏色,每個區(qū)域只涂一種顏色,則不同的涂色方案有()A.24種 B.48種C.72種 D.96種二、填空題:本題共4小題,每小題5分,共20分。13.在圓M:中,過點的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積為___________.14.已知曲線在點處的切線的斜率為,則______15.已知為橢圓C:的兩個焦點,P,Q為C上關于坐標原點對稱的兩點,且,則四邊形的面積為________16.不等式的解集是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)命題p:直線l:與圓C:有公共點,命題q:雙曲線的離心率(1)若p,q均為真命題,求實數(shù)m的取值范圍;(2)若為真,為假,求實數(shù)m的取值范圍18.(12分)某廠A車間為了確定合理的工時定額,需要確定加工零件所花費的時間,為此作了五次試驗,得到數(shù)據(jù)如下:加工零件的個數(shù)x12345加工的時間y(小時)1.52.43.23.94.5(1)在給定的坐標系中畫出散點圖;(2)求出y關于x的回歸方程;(3)試預測加工9個零件需要多少時間?參考公式:,19.(12分)已知點是圓:上任意一點,是圓內(nèi)一點,線段的垂直平分線與半徑相交于點(1)當點在圓上運動時,求點的軌跡的方程;(2)設不經(jīng)過坐標原點,且斜率為的直線與曲線相交于,兩點,記,的斜率分別是,.當,都存在且不為時,試探究是否為定值?若是,求出此定值;若不是,請說明理由20.(12分)已知等差數(shù)列中,首項,公差,且數(shù)列的前項和為(1)求和;(2)設,求數(shù)列的前項和21.(12分)已知命題:對任意實數(shù)都有恒成立;命題:關于的方程有實數(shù)根(1)若命題為假命題,求實數(shù)的取值范圍;(2)如果“”為真命題,且“”為假命題,求實數(shù)的取值范圍22.(10分)已知命題p:“,”為假命題,命題q:“實數(shù)滿足”.若是真命題,是假命題,求的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由分層抽樣各層成比例計算即可【詳解】設高二年級學生人數(shù)為,則,解得故選:D2、D【解析】根據(jù)拋物線的準線方程,可直接得出拋物線的焦點,進而利用待定系數(shù)法求得拋物線的標準方程【詳解】準線方程為,則說明拋物線的焦點在軸的正半軸則其標準方程可設為:則準線方程為:解得:則拋物線的標準方程為:故選:D3、A【解析】對等軸雙曲線的焦點的位置進行分類討論,可得出等軸雙曲線的漸近線方程.【詳解】因為,若雙曲線的焦點在軸上,則等軸雙曲線的漸近線方程為;若雙曲線的焦點在軸上,則等軸雙曲線的漸近線方程為.綜上所述,等軸雙曲線的漸近線方程為.故選:A.4、B【解析】直接利用特稱命題的否定是全稱命題寫出結(jié)果即可.【詳解】命題,為特稱命題,而特稱命題的否定是全稱命題,所以命題,,則為:,.故選:B5、D【解析】根據(jù)三角形的周長得出,再由橢圓的定義得頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,可求得頂點C的軌跡方程.【詳解】因為,所以,所以頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,即,所以頂點C的軌跡方程是,故選:D.【點睛】本題考查橢圓的定義,由定義求得動點的軌跡方程,求解時,注意去掉不滿足的點,屬于基礎題.6、A【解析】以運行軌道長軸所在直線為x軸,地心F為右焦點建立平面直角坐標系,設橢圓方程為,根據(jù)題意列出方程組,解方程組即可.【詳解】以運行軌道長軸所在直線為x軸,地心F為右焦點建立平面直角坐標系,設橢圓方程為,其中,根據(jù)題意有,,所以,,所以橢圓的離心率故選:A7、C【解析】畫出圖象,結(jié)合漸近線方程得到,,進而得到,結(jié)合漸近線的斜率及角度關系,列出方程,求出,從而求出.【詳解】漸近線為,如圖,過點F作FB垂直于點B,交于點A,則到漸近線距離為,則,又,由勾股定理得:,則,又,,所以,解得:,所以.故選:C8、A【解析】先計算兩圓心之間的距離,判斷距離和半徑和、半徑差之間的關系即可.【詳解】圓圓心,半徑,圓圓心,半徑,兩圓心之間的距離,故兩圓內(nèi)切.故選:A.9、B【解析】利用等差數(shù)列的性質(zhì)可求得的值,再結(jié)合等差數(shù)列求和公式以及等差中項的性質(zhì)可求得的值.【詳解】由等差數(shù)列的性質(zhì)可得,則,故.故選:B.10、D【解析】由題意,化簡即可得出雙曲線的離心率【詳解】解:由題意,.故選:D11、A【解析】分別求出,即可得到答案.【詳解】直線經(jīng)過定點.因為,所以,所以要使直線與線段沒有公共點,只需:,即.所以的取值范圍是.故選:A12、B【解析】根據(jù)題意,分2步進行分析區(qū)域①、②、⑤和區(qū)域③、④的涂色方法,由分步計數(shù)原理計算可得答案.【詳解】根據(jù)題意,分2步進行分析:當區(qū)域①、②、⑤這三個區(qū)域兩兩相鄰,有種涂色的方法;當區(qū)域③、④,必須有1個區(qū)域選第4種顏色,有2種選法,選好后,剩下的區(qū)域有1種選法,則區(qū)域③、④有2種涂色方法,故共有種涂色的方法.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先將圓的方程配成標準式,即可得到圓心坐標與半徑,從而可得點在圓內(nèi),即可得到過點的最長弦、最短弦弦長,即可求出四邊形的面積;【詳解】解:圓M:,即,圓心,半徑,點,則,所以點在圓內(nèi),所以過點的最長弦,又,所以最短弦,所以故答案為:14、【解析】對求導,根據(jù)題設有且,即可得目標式的值.【詳解】由題設,且定義域為,則,所以,整理得,又,所以,兩邊取對數(shù)有,得:,即.故答案為:.15、【解析】根據(jù)已知可得,設,利用勾股定理結(jié)合,求出,四邊形面積等于,即可求解.【詳解】因為為上關于坐標原點對稱的兩點,且,所以四邊形為矩形,設,則,所以,,即四邊形面積等于.故答案為:.16、【解析】把原不等式的右邊移項到左邊,通分計算后,根據(jù)分式不等式解法,然后轉(zhuǎn)化為兩個一元一次不等式組,注意分母不為0的要求,求出不等式組的解集即為原不等式的解集【詳解】不等式得,故,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)求出,成立的等價條件,即可求實數(shù)的取值范圍;(2)若“”為假命題,“”為真命題,則、一真一假,當真假時,求出的取值范圍,當假真時,求出的取值范圍,然后取并集即可得答案【小問1詳解】若命題為真命題,則,解得:,若命題為真命題,則且,,解得,∴,均為真命題,實數(shù)的取值范圍是,;【小問2詳解】若為真,為假,則、一真一假;①當真假時,即“”且“或”,則此時的取值范圍是;當假真時,即“或”且“”,則此時的取值范圍是;綜上,的取值范圍是18、(1)圖見解析;(2);(3)小時.【解析】(1)根據(jù)表格數(shù)據(jù)在坐標系中描出對應點即可.(2)由表格中的數(shù)據(jù)代入公式算出,再求,即可得到方程;(3)中將自變量為9代入回歸方程可得需用時間.【小問1詳解】【小問2詳解】由表中數(shù)據(jù)得:,,,,由x與y之間具有線性相關關系,根據(jù)公式知:,,∴回歸直線方程為:【小問3詳解】將代入回歸直線方程得,,∴預測加工9個零件需要小時19、(1);(2)是定值,.【解析】(1)根據(jù)給定條件探求得,再借助橢圓定義直接求得軌跡的方程.(2)設出直線的方程,再與軌跡的方程聯(lián)立,借助韋達定理計算作答.【小問1詳解】圓:的圓心,半徑,因線段的垂直平分線與半徑相交于點,則,而,于是得,因此,點的軌跡是以C,A為左右焦點,長軸長為4的橢圓,短半軸長有,所以軌跡的方程為.【小問2詳解】依題意,設直線的方程為:,,由消去y并整理得:,,則且,設,則有,,因直線,的斜率,都存在且不為,因此,且,,,所以直線,的斜率,都存在且不為時,是定值,這個定值是.【點睛】方法點睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值20、(1),;(2).【解析】(1)根據(jù)題意,結(jié)合等差數(shù)列的通項公式與求和公式,即可求解;(2)根據(jù)題意,求出,結(jié)合等差數(shù)列求和公式,即可求解.【小問1詳解】根據(jù)題意,易知;.【小問2詳解】根據(jù)題意,易知,因為,所以數(shù)列是首項為2,公差為的等差數(shù)列,故21、(1);(2)【解析】(1)先分別求出命題為真命題和命題為真命題時參數(shù)的范圍,則可得當命題為假命題,實數(shù)的取值范圍(2)由“”為真命題,且“”為假命題,則命題,一真一假,再分真,且假,和真,且假兩種情況分別求出參數(shù)的范圍,再綜合得到答案.【詳解】命題為真命題:對任意實數(shù)都有恒成立或;命題為真命題:關于的方程有實數(shù)根;(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論