北京市昌平區(qū)2023年高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第1頁
北京市昌平區(qū)2023年高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第2頁
北京市昌平區(qū)2023年高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第3頁
北京市昌平區(qū)2023年高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第4頁
北京市昌平區(qū)2023年高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

北京市昌平區(qū)2023年高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.從裝有2個(gè)紅球和2個(gè)白球的口袋內(nèi)任取兩個(gè)球,則下列選項(xiàng)中的兩個(gè)事件為互斥事件的是()A.至多有1個(gè)白球;都是紅球 B.至少有1個(gè)白球;至少有1個(gè)紅球C.恰好有1個(gè)白球;都是紅球 D.至多有1個(gè)白球;至多有1個(gè)紅球2.“冰雹猜想”數(shù)列滿足:,,若,則()A.4 B.3C.2 D.13.已知等比數(shù)列的前n項(xiàng)和為,若,,則()A.250 B.210C.160 D.904.展開式的第項(xiàng)為()A. B.C. D.5.已知橢圓是橢圓上關(guān)于原點(diǎn)對稱的兩點(diǎn),設(shè)以為對角線的橢圓內(nèi)接平行四邊形的一組鄰邊斜率分別為,則()A.1 B.C. D.6.已知是雙曲線的左焦點(diǎn),為右頂點(diǎn),是雙曲線上的點(diǎn),軸,若,則雙曲線的離心率為()A. B.C. D.7.窗花是貼在窗紙或窗戶玻璃上的剪紙,是古老的傳統(tǒng)民間藝術(shù)之一.如圖是一個(gè)窗花的圖案,以正六邊形各頂點(diǎn)為圓心、邊長為半徑作圓,陰影部分為其公共部分.現(xiàn)從該正六邊形中任取一點(diǎn),則此點(diǎn)取自于陰影部分的概率為()A. B.C. D.8.已知隨機(jī)變量,且,,則為()A.0.1358 B.0.2716C.0.1359 D.0.27189.設(shè),“命題”是“命題”的()A.充分且不必要條件 B.必要且不充分條件C.充要條件 D.既不充分也不必要條件10.已知橢圓與雙曲線有相同的焦點(diǎn)、,橢圓的離心率為,雙曲線的離心率為,點(diǎn)P為橢圓與雙曲線的交點(diǎn),且,則當(dāng)取最大值時(shí)的值為()A. B.C. D.11.為發(fā)揮我市“示范性高中”的輻射帶動(dòng)作用,促進(jìn)教育的均衡發(fā)展,共享優(yōu)質(zhì)教育資源.現(xiàn)分派我市“示范性高中”的5名教師到,,三所薄弱學(xué)校支教,開展送教下鄉(xiāng)活動(dòng),每所學(xué)校至少分派一人,其中教師甲不能到學(xué)校,則不同分派方案的種數(shù)是()A.150 B.136C.124 D.10012.用這3個(gè)數(shù)組成沒有重復(fù)數(shù)字的三位數(shù),則事件“這個(gè)三位數(shù)是偶數(shù)”與事件“這個(gè)三位數(shù)大于342”()A.是互斥但不對立事件 B.不是互斥事件C.是對立事件 D.是不可能事件二、填空題:本題共4小題,每小題5分,共20分。13.已知空間向量,,,若,,共面,則實(shí)數(shù)___________.14.若圓和圓的公共弦所在的直線方程為,則______15.已知向量,,且,則實(shí)數(shù)______.16.已知,,且,則的最小值為___________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知曲線C的方程為(1)判斷曲線C是什么曲線,并求其標(biāo)準(zhǔn)方程;(2)過點(diǎn)的直線l交曲線C于M,N兩點(diǎn),若點(diǎn)P為線段MN的中點(diǎn),求直線l的方程18.(12分)如圖,在三棱錐中,底面,.點(diǎn),,分別為棱,,的中點(diǎn),是線段的中點(diǎn),,(1)求證:平面;(2)求二面角的正弦值;(3)已知點(diǎn)在棱上,且直線與直線所成角的余弦值為,求線段的長19.(12分)已知函數(shù)(1)當(dāng)時(shí),求的單調(diào)區(qū)間與極值;(2)若不等式在區(qū)間上恒成立,求k的取值范圍20.(12分)在二項(xiàng)式的展開式中;(1)若,求常數(shù)項(xiàng);(2)若第4項(xiàng)的系數(shù)與第7項(xiàng)的系數(shù)比為,求:①二項(xiàng)展開式中的各項(xiàng)的二項(xiàng)式系數(shù)之和;②二項(xiàng)展開式中各項(xiàng)的系數(shù)之和21.(12分)如圖是一拋物線型機(jī)械模具的示意圖,該模具是拋物線的一部分且以拋物線的軸為對稱軸,已知頂點(diǎn)深度4cm,口徑長為12cm(1)以頂點(diǎn)為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系(如圖),求該拋物線的標(biāo)準(zhǔn)方程;(2)為滿足生產(chǎn)的要求,需將磨具的頂點(diǎn)深度減少1cm,求此時(shí)該磨具的口徑長22.(10分)如圖,四棱錐P-ABCD的底面為正方形,PD⊥底面ABCD,PD=AD=2,E,F(xiàn)分別為AD和PB的中點(diǎn).請用空間向量知識解答下列問題:(1)求證:EF//平面PDC;(2)求平面EFC與平面PBD夾角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)試驗(yàn)過程進(jìn)行分析,利用互斥事件的定義對四個(gè)選項(xiàng)一一判斷即可.【詳解】對于A:“至多有1個(gè)白球”包含都是紅球和一紅一白,“都是紅球”包含都是紅球,所以“至多有1個(gè)白球”與“都是紅球”不是互斥事件.故A錯(cuò)誤;對于B:“至少有1個(gè)白球”包含都是白球和一紅一白,“至少有1個(gè)紅球”包含都是紅球和一紅一白,所以“至少有1個(gè)白球”與“至少有1個(gè)紅球”不是互斥事件.故B錯(cuò)誤;對于C:“恰好有1個(gè)白球”包含一紅一白,“都是紅球”包含都是紅球,所以“恰好有1個(gè)白球”與“都是紅球”是互斥事件.故C錯(cuò)誤;對于D:“至多有1個(gè)紅球”包含都是白球和一紅一白,“至多有1個(gè)白球”包含都是紅球和一紅一白,所以“至多有1個(gè)白球”與“至多有1個(gè)紅球”不是互斥事件.故D錯(cuò)誤.故選:C2、A【解析】根據(jù)題意分別假設(shè)為奇數(shù)、偶數(shù)的情況,求出對應(yīng)的即可.【詳解】由題意知,因?yàn)?,若為奇?shù)時(shí),,與為奇數(shù)矛盾,不符合題意;若為偶數(shù)時(shí),,可得,符合題意.不符合故選:A3、B【解析】設(shè)為等比數(shù)列,由此利用等比數(shù)列的前項(xiàng)和為能求出結(jié)果【詳解】設(shè),等比數(shù)列的前項(xiàng)和為為等比數(shù)列,為等比數(shù)列,解得故選:B4、B【解析】由展開式的通項(xiàng)公式求解即可【詳解】因?yàn)?,所以展開式的第項(xiàng)為,故選:B5、C【解析】根據(jù)橢圓的對稱性和平行四邊形的性質(zhì)進(jìn)行求解即可.【詳解】是橢圓上關(guān)于原點(diǎn)對稱兩點(diǎn),所以不妨設(shè),即,因?yàn)槠叫兴倪呅我彩侵行膶ΨQ圖形,所以也是橢圓上關(guān)于原點(diǎn)對稱的兩點(diǎn),所以不妨設(shè),即,,得:,即,故選:C6、C【解析】根據(jù)條件可得與,進(jìn)而可得,,的關(guān)系,可得解.【詳解】由已知得,設(shè)點(diǎn),由軸,則,代入雙曲線方程可得,即,又,所以,即,整理可得,故,解得或(舍),故選:C.7、D【解析】求得陰影部分的面積,結(jié)合幾何概型概率計(jì)算公式,計(jì)算出所求的概率.【詳解】設(shè)正六邊形的邊長為,則其面積為.陰影部分面積為,故所求概率為.故選:D8、C【解析】根據(jù)正態(tài)分布的對稱性可求概率.【詳解】由題設(shè)可得,,故選:C.9、A【解析】根據(jù)充分、必要條件的概念理解,可得結(jié)果.【詳解】由,則或所以“”可推出“或”但“或”不能推出“”故命題是命題充分且不必要條件故選:A【點(diǎn)睛】本題主要考查充分、必要條件的概念理解,屬基礎(chǔ)題.10、D【解析】由橢圓的定義及雙曲線的定義結(jié)合余弦定理可得,,的關(guān)系,由此可得,再利用重要不等式求最值,并求此時(shí)的的值.【詳解】設(shè)為第一象限的交點(diǎn),、,則、,解得、,在中,由余弦定理得:,∴,∴,∴,∴,∴,,即,當(dāng)且僅當(dāng),即,時(shí)等號成立,此時(shí)故選:D11、D【解析】對甲所在組的人數(shù)分類討論即得解.【詳解】當(dāng)甲一個(gè)人去一個(gè)學(xué)校時(shí),有種;當(dāng)甲所在的學(xué)校有兩個(gè)老師時(shí),有種;當(dāng)甲所在的學(xué)校有三個(gè)老師時(shí),有種;所以共有28+48+24=100種.故選:D【點(diǎn)睛】方法點(diǎn)睛:排列組合常用方法有:簡單問題直接法、小數(shù)問題列舉法、相鄰問題捆綁法、不相鄰問題插空法、至少問題間接法、復(fù)雜問題分類法、等概率問題縮倍法.要根據(jù)已知條件靈活選擇方法求解.12、B【解析】根據(jù)題意列舉出所有可能性,進(jìn)而根據(jù)各類事件的定義求得答案.【詳解】由題意,將2,3,4組成一個(gè)沒有重復(fù)數(shù)字的三位數(shù)的情況有:{234,243,324,342,423,432},其中偶數(shù)有{234,324,342,432},大于342的有{423,432}.所以兩個(gè)事件不是互斥事件,也不是對立事件.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】根據(jù)向量共面,可設(shè),先求解出的值,則的值可求.【詳解】因?yàn)椋?,共面且,不共線,所以可設(shè),所以,所以,所以,所以,故答案為:1.14、【解析】由兩圓公共弦方程,將兩圓方程相減得到,結(jié)合已知列方程組求、,即可得答案.【詳解】由題設(shè),兩圓方程相減可得:,即為公共弦,∴,可得,∴.故答案為:.15、【解析】利用向量平行的條件直接解出.【詳解】因?yàn)橄蛄浚?,且,所以,解?故答案為:.16、25【解析】根據(jù),,且,由,利用基本不等式求解.【詳解】因?yàn)?,,且,所以,?dāng)且僅當(dāng),即時(shí),等號成立,所以的最小值為25,故答案為:25三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)橢圓的定義即可判斷并求解;(2)根據(jù)點(diǎn)差法即可求解中點(diǎn)弦斜率和中點(diǎn)弦方程.【小問1詳解】設(shè),,E(x,y),∵,,且,點(diǎn)的軌跡是以,為焦點(diǎn),長軸長為4的橢圓設(shè)橢圓C的方程為,記,則,,,,,曲線的標(biāo)準(zhǔn)方程為【小問2詳解】根據(jù)橢圓對稱性可知直線l斜率存在,設(shè),則,由①-②得,,∴l(xiāng):,即.18、(1)證明見解析;(2);(3)或【解析】本小題主要考查直線與平面平行、二面角、異面直線所成的角等基礎(chǔ)知識.考查用空間向量解決立體幾何問題的方法.考查空間想象能力、運(yùn)算求解能力和推理論證能力.首先要建立空間直角坐標(biāo)系,寫出相關(guān)點(diǎn)的坐標(biāo),證明線面平行只需求出平面的法向量,計(jì)算直線對應(yīng)的向量與法向量的數(shù)量積為0,求二面角只需求出兩個(gè)半平面對應(yīng)的法向量,借助法向量的夾角求二面角,利用向量的夾角公式,求出異面直線所成角的余弦值,利用已知條件,求出的值.試題解析:如圖,以A為原點(diǎn),分別以,,方向?yàn)閤軸、y軸、z軸正方向建立空間直角坐標(biāo)系.依題意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)證明:=(0,2,0),=(2,0,).設(shè),為平面BDE的法向量,則,即.不妨設(shè),可得.又=(1,2,),可得.因?yàn)槠矫鍮DE,所以MN//平面BDE.(2)解:易知為平面CEM的一個(gè)法向量.設(shè)為平面EMN的法向量,則,因?yàn)?,,所?不妨設(shè),可得.因此有,于是.所以,二面角C—EM—N的正弦值為.(3)解:依題意,設(shè)AH=h(),則H(0,0,h),進(jìn)而可得,.由已知,得,整理得,解得,或.所以,線段AH的長為或.【考點(diǎn)】直線與平面平行、二面角、異面直線所成角【名師點(diǎn)睛】空間向量是解決空間幾何問題的銳利武器,不論是求空間角、空間距離還是證明線面關(guān)系利用空間向量都很方便,利用向量夾角公式求異面直線所成的角又快又準(zhǔn),特別是借助平面的法向量求線面角,二面角或點(diǎn)到平面的距離都很容易.19、(1)在上單調(diào)遞增,在上單調(diào)遞減,極大值為﹣1,無極小值(2)【解析】(1)利用導(dǎo)數(shù)求出單調(diào)區(qū)間,即可求出極值;(2)令,利用分離參數(shù)法得到,利用導(dǎo)數(shù)求出的最大值即可求解.【小問1詳解】當(dāng)時(shí),,定義域?yàn)?,?dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減∴當(dāng)時(shí),取得極大值﹣1所以在上單調(diào)遞增,在上單調(diào)遞減極大值為﹣1,無極小值【小問2詳解】由,得,令,只需.求導(dǎo)得,所以當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,∴當(dāng)時(shí),取得最大值,∴k的取值范圍為20、(1)60(2)①1024;②1【解析】(1)根據(jù)二項(xiàng)式定理求解(2)根據(jù)二項(xiàng)式定理與條件求解,二項(xiàng)式系數(shù)之和為,系數(shù)和可賦值【小問1詳解】若,則,(,…,9)令∴∴常數(shù)項(xiàng)為.【小問2詳解】,(,…,),解得①②令,得系數(shù)和為21、(1)(2)cm【解析】(1)設(shè)拋物線的標(biāo)準(zhǔn)方程為,由題意可得拋物線過點(diǎn),將此點(diǎn)代入方程中可求出的值,從而可得拋物線方程,(2)設(shè)此時(shí)的口徑長為,則拋物線過點(diǎn),代入拋物線方程可求出的值,從而可求得答案【小問1詳解】由題意,建立如圖所示的平面直角坐標(biāo)系,設(shè)拋物線的標(biāo)準(zhǔn)方程為,因?yàn)轫旤c(diǎn)深度4,口徑長為12,所以該拋物線過點(diǎn),所以,得,所以拋物線方程為;【小問2詳解】若將磨具的頂點(diǎn)深度減少,設(shè)此時(shí)的口徑長為,則可得,得,所以此時(shí)該磨具的口徑長22、(1)證明見解析(2)【解析】(1)以為原點(diǎn),以所在的直線分別為軸,建立空間直角坐標(biāo)系,然后求出平面的法向量,再求出,判斷是否與法垂直即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論