三角形輔助線的添加方法和經(jīng)典習(xí)題和答案_第1頁
三角形輔助線的添加方法和經(jīng)典習(xí)題和答案_第2頁
三角形輔助線的添加方法和經(jīng)典習(xí)題和答案_第3頁
三角形輔助線的添加方法和經(jīng)典習(xí)題和答案_第4頁
三角形輔助線的添加方法和經(jīng)典習(xí)題和答案_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1-2- 龍文教育·教育 一、在利用三角形三邊關(guān)系證明線段不等關(guān)系時,若直接證不出來,可連接兩點或延長某邊構(gòu)成三角形,使結(jié)論中出現(xiàn)的線段在一個或幾個三角形中,再運用三角形三邊的不等關(guān)系證明,如:例1:已知如圖1-1:D、E為△ABC內(nèi)兩點,求證:AB+AC>BD+DE+CE.證明:(法一)將DE兩邊延長分別交AB、AC于M、N,在△AMN中,AM+AN>MD+DE+NE;(1)在△BDM中,MB+MD>BD;(2)在△CEN中,CN+NE>CE;(3)由(1)+(2)+(3)得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE∴AB+AC>BD+DE+EC(法二:)如圖1-2,延長BD交AC于F,延長CE交BF于G,在△ABF和△GFC和△GDE中有:AB+AF>BD+DG+GF

(三角形兩邊之和大于第三邊)(1)GF+FC>GE+CE(同上)………………(2)DG+GE>DE(同上)……(3)由(1)+(2)+(3)得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE∴AB+AC>BD+DE+EC。二、在利用三角形的外角大于任何和它不相鄰的內(nèi)角時如直接證不出來時,可連接兩點或延長某邊,構(gòu)造三角形,使求證的大角在某個三角形的外角的位置上,小角處于這個三角形的內(nèi)角位置上,再利用外角定理:例如:如圖2-1:已知D為△ABC內(nèi)的任一點,求證:∠BDC>∠BAC。分析:因為∠BDC與∠BAC不在同一個三角形中,沒有直接的聯(lián)系,可適當添加輔助線構(gòu)造新的三角形,使∠BDC處于在外角的位置,∠BAC處于在內(nèi)角的位置;證法一:延長BD交AC于點E,這時∠BDC是△EDC的外角,∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC證法二:連接AD,并延長交BC于F∵∠BDF是△ABD的外角∴∠BDF>∠BAD,同理,∠CDF>∠CAD∴∠BDF+∠CDF>∠BAD+∠CAD即:∠BDC>∠BAC。注意:利用三角形外角定理證明不等關(guān)系時,通常將大角放在某三角形的外角位置上,小角放在這個三角形的內(nèi)角位置上,再利用不等式性質(zhì)證明。三、有角平分線時,通常在角的兩邊截取相等的線段,構(gòu)造全等三角形,如:例如:如圖3-1:已知AD為△ABC的中線,且∠1=∠2,∠3=∠4,求證:BE+CF>EF。分析:要證BE+CF>EF,可利用三角形三邊關(guān)系定理證明,須把BE,CF,EF移到同一個三角形中,而由已知∠1=∠2,∠3=∠4,可在角的兩邊截取相等的線段,利用三角形全等對應(yīng)邊相等,把EN,F(xiàn)N,EF移到同一個三角形中。證明:在DA上截取DN=DB,連接NE,NF,則DN=DC,在△DBE和△DNE中:∵∴△DBE≌△DNE(SAS)∴BE=NE(全等三角形對應(yīng)邊相等)同理可得:CF=NF在△EFN中EN+FN>EF(三角形兩邊之和大于第三邊)∴BE+CF>EF。注意:當證題有角平分線時,??煽紤]在角的兩邊截取相等的線段,構(gòu)造全等三角形,然后用全等三角形的性質(zhì)得到對應(yīng)元素相等。四、有以線段中點為端點的線段時,常延長加倍此線段,構(gòu)造全等三角形。例如:如圖4-1:AD為△ABC的中線,且∠1=∠2,∠3=∠4,求證:BE+CF>EF證明:延長ED至M,使DM=DE,連接CM,MF。在△BDE和△CDM中,∵∴△BDE≌△CDM(SAS)又∵∠1=∠2,∠3=∠4(已知)∠1+∠2+∠3+∠4=180°(平角的定義)∴∠3+∠2=90°即:∠EDF=90°∴∠FDM=∠EDF=90°在△EDF和△MDF中∵∴△EDF≌△MDF(SAS)∴EF=MF(全等三角形對應(yīng)邊相等)∵在△CMF中,CF+CM>MF(三角形兩邊之和大于第三邊)∴BE+CF>EF注:上題也可加倍FD,證法同上。注意:當涉及到有以線段中點為端點的線段時,可通過延長加倍此線段,構(gòu)造全等三角形,使題中分散的條件集中。五、有三角形中線時,常延長加倍中線,構(gòu)造全等三角形。例如:如圖5-1:AD為△ABC的中線,求證:AB+AC>2AD。分析:要證AB+AC>2AD,由圖想到:AB+BD>AD,AC+CD>AD,所以有AB+AC+BD+CD>AD+AD=2AD,左邊比要證結(jié)論多BD+CD,故不能直接證出此題,而由2AD想到要構(gòu)造2AD,即加倍中線,把所要證的線段轉(zhuǎn)移到同一個三角形中去。證明:延長AD至E,使DE=AD,連接BE,則AE=2AD∵AD為△ABC的中線(已知)∴BD=CD(中線定義)在△ACD和△EBD中∴△ACD≌△EBD(SAS)∴BD=CF(全等三角形對應(yīng)邊相等)∴BD=2CE十、連接已知點,構(gòu)造全等三角形。例如:已知:如圖10-1;AC、BD相交于O點,且AB=DC,AC=BD,求證:∠A=∠D。分析:要證∠A=∠D,可證它們所在的三角形△ABO和△DCO全等,而只有AB=DC和對頂角兩個條件,差一個條件,,難以證其全等,只有另尋其它的三角形全等,由AB=DC,AC=BD,若連接BC,則△ABC和△DCB全等,所以,證得∠A=∠D。證明:連接BC,在△ABC和△DCB中∵∴△ABC≌△DCB(SSS)∴∠A=∠D(全等三角形對應(yīng)邊相等)十一、取線段中點構(gòu)造全等三有形。例如:如圖11-1:AB=DC,∠A=∠D求證:∠ABC=∠DCB。分析:由AB=DC,∠A=∠D,想到如取AD的中點N,連接NB,NC,再由SAS公理有△ABN≌△DCN,故BN=CN,∠ABN=∠DCN。下面只需證∠NBC=∠NCB,再取BC的中點M,連接MN,則由SSS公理有△NBM≌△NCM,所以∠NBC=∠NCB。問題得證。證明:取AD,BC的中點N、M,連接NB,NM,NC。則AN=DN,BM=CM,在△ABN和△DCN中∵∴△ABN≌△D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論