版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省岳陽市第五中學(xué)2023年高中數(shù)學(xué)試題競賽模擬(二)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),則下列結(jié)論錯誤的是()A.函數(shù)的最小正周期為πB.函數(shù)的圖象關(guān)于點對稱C.函數(shù)在上單調(diào)遞增D.函數(shù)的圖象可由的圖象向左平移個單位長度得到2.在“一帶一路”知識測驗后,甲、乙、丙三人對成績進(jìn)行預(yù)測.甲:我的成績比乙高.乙:丙的成績比我和甲的都高.丙:我的成績比乙高.成績公布后,三人成績互不相同且只有一個人預(yù)測正確,那么三人按成績由高到低的次序為A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙3.下列函數(shù)中,在區(qū)間上單調(diào)遞減的是()A. B. C. D.4.若函數(shù)函數(shù)只有1個零點,則的取值范圍是()A. B. C. D.5.已知復(fù)數(shù),則()A. B. C. D.26.若復(fù)數(shù)滿足,復(fù)數(shù)的共軛復(fù)數(shù)是,則()A.1 B.0 C. D.7.設(shè)α,β為兩個平面,則α∥β的充要條件是A.α內(nèi)有無數(shù)條直線與β平行B.α內(nèi)有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面8.如圖,在正四棱柱中,,分別為的中點,異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且9.如圖,內(nèi)接于圓,是圓的直徑,,則三棱錐體積的最大值為()A. B. C. D.10.設(shè)函數(shù)若關(guān)于的方程有四個實數(shù)解,其中,則的取值范圍是()A. B. C. D.11.已知函數(shù)且,則實數(shù)的取值范圍是()A. B. C. D.12.已知函數(shù),則下列結(jié)論中正確的是①函數(shù)的最小正周期為;②函數(shù)的圖象是軸對稱圖形;③函數(shù)的極大值為;④函數(shù)的最小值為.A.①③ B.②④C.②③ D.②③④二、填空題:本題共4小題,每小題5分,共20分。13.?dāng)?shù)學(xué)家狄里克雷對數(shù)論,數(shù)學(xué)分析和數(shù)學(xué)物理有突出貢獻(xiàn),是解析數(shù)論的創(chuàng)始人之一.函數(shù),稱為狄里克雷函數(shù).則關(guān)于有以下結(jié)論:①的值域為;②;③;④其中正確的結(jié)論是_______(寫出所有正確的結(jié)論的序號)14.已知平面向量,,滿足||=1,||=2,,的夾角等于,且()?()=0,則||的取值范圍是_____.15.的展開式中的系數(shù)為________.16.已知拋物線的對稱軸與準(zhǔn)線的交點為,直線與交于,兩點,若,則實數(shù)__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)等差數(shù)列的公差為2,分別等于等比數(shù)列的第2項,第3項,第4項.(1)求數(shù)列和的通項公式;(2)若數(shù)列滿足,求數(shù)列的前2020項的和.18.(12分)已知數(shù)列,其前項和為,若對于任意,,且,都有.(1)求證:數(shù)列是等差數(shù)列(2)若數(shù)列滿足,且等差數(shù)列的公差為,存在正整數(shù),使得,求的最小值.19.(12分)已知函數(shù),.(1)當(dāng)時,判斷是否是函數(shù)的極值點,并說明理由;(2)當(dāng)時,不等式恒成立,求整數(shù)的最小值.20.(12分)曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)過原點且傾斜角為的射線與曲線分別交于兩點(異于原點),求的取值范圍.21.(12分)如圖,在三棱柱中,平面,,且.(1)求棱與所成的角的大?。唬?)在棱上確定一點,使二面角的平面角的余弦值為.22.(10分)在平面直角坐標(biāo)系中,,,且滿足(1)求點的軌跡的方程;(2)過,作直線交軌跡于,兩點,若的面積是面積的2倍,求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由可判斷選項A;當(dāng)時,可判斷選項B;利用整體換元法可判斷選項C;可判斷選項D.【詳解】由題知,最小正周期,所以A正確;當(dāng)時,,所以B正確;當(dāng)時,,所以C正確;由的圖象向左平移個單位,得,所以D錯誤.故選:D.【點睛】本題考查余弦型函數(shù)的性質(zhì),涉及到周期性、對稱性、單調(diào)性以及圖象變換后的解析式等知識,是一道中檔題.2、A【解析】
利用逐一驗證的方法進(jìn)行求解.【詳解】若甲預(yù)測正確,則乙、丙預(yù)測錯誤,則甲比乙成績高,丙比乙成績低,故3人成績由高到低依次為甲,乙,丙;若乙預(yù)測正確,則丙預(yù)測也正確,不符合題意;若丙預(yù)測正確,則甲必預(yù)測錯誤,丙比乙的成績高,乙比甲成績高,即丙比甲,乙成績都高,即乙預(yù)測正確,不符合題意,故選A.【點睛】本題將數(shù)學(xué)知識與時政結(jié)合,主要考查推理判斷能力.題目有一定難度,注重了基礎(chǔ)知識、邏輯推理能力的考查.3、C【解析】
由每個函數(shù)的單調(diào)區(qū)間,即可得到本題答案.【詳解】因為函數(shù)和在遞增,而在遞減.故選:C【點睛】本題主要考查常見簡單函數(shù)的單調(diào)區(qū)間,屬基礎(chǔ)題.4、C【解析】
轉(zhuǎn)化有1個零點為與的圖象有1個交點,求導(dǎo)研究臨界狀態(tài)相切時的斜率,數(shù)形結(jié)合即得解.【詳解】有1個零點等價于與的圖象有1個交點.記,則過原點作的切線,設(shè)切點為,則切線方程為,又切線過原點,即,將,代入解得.所以切線斜率為,所以或.故選:C【點睛】本題考查了導(dǎo)數(shù)在函數(shù)零點問題中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于較難題.5、C【解析】
根據(jù)復(fù)數(shù)模的性質(zhì)即可求解.【詳解】,,故選:C【點睛】本題主要考查了復(fù)數(shù)模的性質(zhì),屬于容易題.6、C【解析】
根據(jù)復(fù)數(shù)代數(shù)形式的運(yùn)算法則求出,再根據(jù)共軛復(fù)數(shù)的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點睛】本題主要考查復(fù)數(shù)代數(shù)形式的運(yùn)算法則,考查共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.7、B【解析】
本題考查了空間兩個平面的判定與性質(zhì)及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質(zhì)定理即可作出判斷.【詳解】由面面平行的判定定理知:內(nèi)兩條相交直線都與平行是的充分條件,由面面平行性質(zhì)定理知,若,則內(nèi)任意一條直線都與平行,所以內(nèi)兩條相交直線都與平行是的必要條件,故選B.【點睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯誤.8、B【解析】
連接,,,,由正四棱柱的特征可知,再由平面的基本性質(zhì)可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設(shè),則,則,,,由余弦定理,得.故選:B【點睛】本題主要考查異面直線的定義及所成的角和平面的基本性質(zhì),還考查了推理論證和運(yùn)算求解的能力,屬于中檔題.9、B【解析】
根據(jù)已知證明平面,只要設(shè),則,從而可得體積,利用基本不等式可得最大值.【詳解】因為,所以四邊形為平行四邊形.又因為平面,平面,所以平面,所以平面.在直角三角形中,,設(shè),則,所以,所以.又因為,當(dāng)且僅當(dāng),即時等號成立,所以.故選:B.【點睛】本題考查求棱錐體積的最大值.解題方法是:首先證明線面垂直同,得棱錐的高,然后設(shè)出底面三角形一邊長為,用建立體積與邊長的函數(shù)關(guān)系,由基本不等式得最值,或由函數(shù)的性質(zhì)得最值.10、B【解析】
畫出函數(shù)圖像,根據(jù)圖像知:,,,計算得到答案.【詳解】,畫出函數(shù)圖像,如圖所示:根據(jù)圖像知:,,故,且.故.故選:.【點睛】本題考查了函數(shù)零點問題,意在考查學(xué)生的計算能力和應(yīng)用能力,畫出圖像是解題的關(guān)鍵.11、B【解析】
構(gòu)造函數(shù),判斷出的單調(diào)性和奇偶性,由此求得不等式的解集.【詳解】構(gòu)造函數(shù),由解得,所以的定義域為,且,所以為奇函數(shù),而,所以在定義域上為增函數(shù),且.由得,即,所以.故選:B【點睛】本小題主要考查利用函數(shù)的單調(diào)性和奇偶性解不等式,屬于中檔題.12、D【解析】
因為,所以①不正確;因為,所以,,所以,所以函數(shù)的圖象是軸對稱圖形,②正確;易知函數(shù)的最小正周期為,因為函數(shù)的圖象關(guān)于直線對稱,所以只需研究函數(shù)在上的極大值與最小值即可.當(dāng)時,,且,令,得,可知函數(shù)在處取得極大值為,③正確;因為,所以,所以函數(shù)的最小值為,④正確.故選D.二、填空題:本題共4小題,每小題5分,共20分。13、②【解析】
根據(jù)新定義,結(jié)合實數(shù)的性質(zhì)即可判斷①②③,由定義求得比小的有理數(shù)個數(shù),即可確定④.【詳解】對于①,由定義可知,當(dāng)為有理數(shù)時;當(dāng)為無理數(shù)時,則值域為,所以①錯誤;對于②,因為有理數(shù)的相反數(shù)還是有理數(shù),無理數(shù)的相反數(shù)還是無理數(shù),所以滿足,所以②正確;對于③,因為,當(dāng)為無理數(shù)時,可以是有理數(shù),也可以是無理數(shù),所以③錯誤;對于④,由定義可知,所以④錯誤;綜上可知,正確的為②.故答案為:②.【點睛】本題考查了新定義函數(shù)的綜合應(yīng)用,正確理解題意是解決此類問題的關(guān)鍵,屬于中檔題.14、【解析】
計算得到||,||cosα﹣1,解得cosα,根據(jù)三角函數(shù)的有界性計算范圍得到答案.【詳解】由()?()=0可得()?||?||cosα﹣1×2cos||?||cosα﹣1,α為與的夾角.再由2?1+4+2×1×2cos7可得||,∴||cosα﹣1,解得cosα.∵0≤α≤π,∴﹣1≤cosα≤1,∴1,即||+1≤0,解得||,故答案為.【點睛】本題考查了向量模的范圍,意在考查學(xué)生的計算能力,利用三角函數(shù)的有界性是解題的關(guān)鍵.15、80.【解析】
只需找到展開式中的項的系數(shù)即可.【詳解】展開式的通項為,令,則,故的展開式中的系數(shù)為80.故答案為:80.【點睛】本題考查二項式定理的應(yīng)用,涉及到展開式中的特殊項系數(shù),考查學(xué)生的計算能力,是一道容易題.16、【解析】
由于直線過拋物線的焦點,因此過,分別作的準(zhǔn)線的垂線,垂足分別為,,由拋物線的定義及平行線性質(zhì)可得,從而再由拋物線定義可求得直線傾斜角的余弦,再求得正切即為直線斜率.注意對稱性,問題應(yīng)該有兩解.【詳解】直線過拋物線的焦點,,過,分別作的準(zhǔn)線的垂線,垂足分別為,,由拋物線的定義知,.因為,所以.因為,所以,從而.設(shè)直線的傾斜角為,不妨設(shè),如圖,則,,同理,則,解得,,由對稱性還有滿足題意.,綜上,.【點睛】本題考查拋物線的性質(zhì),考查拋物線的焦點弦問題,掌握拋物線的定義,把拋物線上點到焦點距離與它到距離聯(lián)系起來是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】
(1)根據(jù)題意同時利用等差、等比數(shù)列的通項公式即可求得數(shù)列和的通項公式;(2)求出數(shù)列的通項公式,再利用錯位相減法即可求得數(shù)列的前2020項的和.【詳解】(1)依題意得:,所以,所以解得設(shè)等比數(shù)列的公比為,所以又(2)由(1)知,因為①當(dāng)時,②由①②得,,即,又當(dāng)時,不滿足上式,.數(shù)列的前2020項的和設(shè)③,則④,由③④得:,所以,所以.【點睛】本題考查等差數(shù)列和等比數(shù)列的通項公式、性質(zhì),錯位相減法求和,考查學(xué)生的邏輯推理能力,化歸與轉(zhuǎn)化能力及綜合運(yùn)用數(shù)學(xué)知識解決問題的能力.考查的核心素養(yǎng)是邏輯推理與數(shù)學(xué)運(yùn)算.是中檔題.18、(1)證明見解析;(2).【解析】
(1)用數(shù)學(xué)歸納法證明即可;(2)根據(jù)條件可得,然后將用,,表示出來,根據(jù)是一個整數(shù),可得結(jié)果.【詳解】解:(1)令,,則即∴,∴成等差數(shù)列,下面用數(shù)學(xué)歸納法證明數(shù)列是等差數(shù)列,假設(shè)成等差數(shù)列,其中,公差為,令,,∴,∴,即,∴成等差數(shù)列,∴數(shù)列是等差數(shù)列;(2),,若存在正整數(shù),使得是整數(shù),則,設(shè),,∴是一個整數(shù),∴,從而又當(dāng)時,有,綜上,的最小值為.【點睛】本題主要考查由遞推關(guān)系得通項公式和等差數(shù)列的性質(zhì),關(guān)鍵是利用數(shù)學(xué)歸納法證明數(shù)列是等差數(shù)列,屬于難題.19、(1)是函數(shù)的極大值點,理由詳見解析;(2)1.【解析】
(1)將直接代入,對求導(dǎo)得,由于函數(shù)單調(diào)性不好判斷,故而構(gòu)造函數(shù),繼續(xù)求導(dǎo),判斷導(dǎo)函數(shù)在左右兩邊的正負(fù)情況,最后得出,是函數(shù)的極大值點;(2)利用題目已有條件得,再證明時,不等式恒成立,即證,從而可知整數(shù)的最小值為1.【詳解】解:(1)當(dāng)時,.令,則當(dāng)時,.即在內(nèi)為減函數(shù),且∴當(dāng)時,;當(dāng)時,.∴在內(nèi)是增函數(shù),在內(nèi)是減函數(shù).綜上,是函數(shù)的極大值點.(2)由題意,得,即.現(xiàn)證明當(dāng)時,不等式成立,即.即證令則∴當(dāng)時,;當(dāng)時,.∴在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,的最大值為.∴當(dāng)時,.即當(dāng)時,不等式成立.綜上,整數(shù)的最小值為.【點睛】本題考查學(xué)生利用導(dǎo)數(shù)處理函數(shù)的極值,最值,判斷函數(shù)的單調(diào)性,由此來求解函數(shù)中的參數(shù)的取值范圍,對學(xué)生要求較高,然后需要學(xué)生能構(gòu)造新函數(shù)處理恒成立問題,為難題20、(1),;(2).【解析】
(1)先將曲線化為普通方程,再由直角坐標(biāo)系與極坐標(biāo)系之間的轉(zhuǎn)化關(guān)系:,可得極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)由已知可得出射線的極坐標(biāo)方程為,聯(lián)立和的極坐標(biāo)方程可得點A和點B的極坐標(biāo),從而得出,由的范圍可求得的取值范圍.【詳解】(1)曲線的普通方程為,即,其極坐標(biāo)方程為;曲線的極坐標(biāo)方程為,即,其直角坐標(biāo)方程為;(2)射線的極坐標(biāo)方程為,聯(lián)立,聯(lián)立,的取值范圍是【點睛】本題考查圓的參數(shù)方程與普通方程互化,圓,拋物線的極坐標(biāo)方程與普通方程的互化,以及在極坐標(biāo)下的直線與圓和拋物線的位置關(guān)系,屬于中檔題.21、(1)(2)【解析】試題分析:(1)因為AB⊥AC,A1B⊥平面ABC,所以以A為坐標(biāo)原點,分別以AC、AB所在直線分別為x軸和y軸,以過A,且平行于BA1的直線為z軸建立空間直角坐標(biāo)系,由AB=AC=A1B=2求出所要用到的點的坐標(biāo),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西交利物浦大學(xué)《藥事管理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年獨立電影導(dǎo)演合作聘用協(xié)議2篇
- 二零二五版辦公室耗材專業(yè)配送與售后服務(wù)合同2篇
- 武昌職業(yè)學(xué)院《空間解析幾何》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024版投資顧問居間服務(wù)協(xié)議示范文本版B版
- 2025年度砂石料電商平臺支付結(jié)算合作協(xié)議3篇
- 中建四局2024年度標(biāo)準(zhǔn)建筑工程協(xié)議模板版
- 2025年度智能照明系統(tǒng)安裝與維護(hù)勞務(wù)外包合同范本2篇
- 二零二五年度貨物運(yùn)輸合同貨物損壞賠償及維修服務(wù)合同3篇
- 2024版家庭裝修簡易合同范本
- 設(shè)計材料與工藝課程 課件 第1章 產(chǎn)品設(shè)計材料與工藝概述
- 幼兒園反恐防暴技能培訓(xùn)內(nèi)容
- 食品企業(yè)質(zhì)檢員聘用合同
- 中醫(yī)診所內(nèi)外部審計制度
- 自然辯證法學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2024年國家危險化學(xué)品經(jīng)營單位安全生產(chǎn)考試題庫(含答案)
- 護(hù)理員技能培訓(xùn)課件
- 河南省鄭州市2023-2024學(xué)年高二上學(xué)期期末考試 數(shù)學(xué) 含答案
- 2024年資格考試-WSET二級認(rèn)證考試近5年真題集錦(頻考類試題)帶答案
- 試卷中國電子學(xué)會青少年軟件編程等級考試標(biāo)準(zhǔn)python三級練習(xí)
- 公益慈善機(jī)構(gòu)數(shù)字化轉(zhuǎn)型行業(yè)三年發(fā)展洞察報告
評論
0/150
提交評論