2024屆云南省楚雄州民族實驗中學數(shù)學高二上期末經(jīng)典模擬試題含解析_第1頁
2024屆云南省楚雄州民族實驗中學數(shù)學高二上期末經(jīng)典模擬試題含解析_第2頁
2024屆云南省楚雄州民族實驗中學數(shù)學高二上期末經(jīng)典模擬試題含解析_第3頁
2024屆云南省楚雄州民族實驗中學數(shù)學高二上期末經(jīng)典模擬試題含解析_第4頁
2024屆云南省楚雄州民族實驗中學數(shù)學高二上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆云南省楚雄州民族實驗中學數(shù)學高二上期末經(jīng)典模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過點且與雙曲線有相同漸近線的雙曲線方程為()A B.C. D.2.若存在,使得不等式成立,則實數(shù)k的取值范圍為()A. B.C. D.3.太極圖被稱為“中華第一圖”,閃爍著中華文明進程的光輝,它是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相對統(tǒng)一的和諧美.定義:能夠?qū)AO的周長和面積同時等分成兩個部分的函數(shù)稱為圓O的一個“太極函數(shù)”,設(shè)圓O:,則下列說法中正確的是()①函數(shù)是圓O的一個太極函數(shù)②圓O的所有非常數(shù)函數(shù)的太極函數(shù)都不能為偶函數(shù)③函數(shù)是圓O的一個太極函數(shù)④函數(shù)的圖象關(guān)于原點對稱是為圓O的太極函數(shù)的充要條件A.①② B.①③C.②③ D.③④4.在條件下,目標函數(shù)的最大值為2,則的最小值是()A.20 B.40C.60 D.805.過拋物線C:y2=4x的焦點F分別作斜率為k1、k2的直線l1、l2,直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,若|k1·k2|=2,則|AB|+|DE|的最小值為()A.10 B.12C.14 D.166.若關(guān)于x的不等式的解集為,則關(guān)于x的不等式的解集是()A. B.,或C.,或 D.,或,或7.已知點是橢圓上一點,點,則的最小值為A. B.C. D.8.在等差數(shù)列中,,,則公差A.1 B.2C.3 D.49.已知向量,,則()A. B.C. D.10.過拋物線C:的準線上任意一點作拋物線的切線,切點為,若在軸上存在定點,使得恒成立,則點的坐標為()A. B.C. D.11.已知直線的傾斜角為,在軸上的截距為,則此直線的方程為()A. B.C. D.12.,則與分別為()A.與 B.與C.與0 D.0與二、填空題:本題共4小題,每小題5分,共20分。13.某班有位同學,將他們從至編號,現(xiàn)用系統(tǒng)抽樣的方法從中選取人參加文藝演出,抽出的編號從小到大依次排列,若排在第一位的編號是,那么第四位的編號是______14.已知點,是橢圓內(nèi)的兩個點,M是橢圓上的動點,則的最大值為______15.一條直線經(jīng)過,并且傾斜角是直線的傾斜角的2倍,則直線的方程為__________16.函數(shù)的圖象在處的切線方程為,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,扇形AOB的半徑為2,圓心角,點C為弧AB上一點,平面AOB且,點且,面MOC(1)求證:平面平面POB;(2)求平面POA與平面MOC所成二面角的正弦值的大小18.(12分)在平面直角坐標系xOy中,曲線的參數(shù)方程為,(t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)已知,曲線與曲線相交于A,B兩點,求.19.(12分)已知函數(shù)的圖像在處的切線斜率為,且時,有極值.(1)求的解析式;(2)求在上的最大值和最小值.20.(12分)等差數(shù)列前n項和為,且(1)求通項公式;(2)記,求數(shù)列的前n項和21.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,∠DAB=60°,PD⊥底面ABCD,點F為棱PD的中點,二面角的余弦值為.(1)求PD的長;(2)求異面直線BF與PA所成角的余弦值;(3)求直線AF與平面BCF所成角的正弦值.22.(10分)如圖,在正方體中,,分別為棱,的中點(1)求證:直線平面;(2)求異面直線與所成角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設(shè)與雙曲線有相同漸近線的雙曲線方程為,代入點的坐標,求出的值,即可的解.【詳解】設(shè)與雙曲線有相同漸近線的雙曲線方程為,代入點,得,解得,所以所求雙曲線方程為,即故選:C.2、C【解析】根據(jù)題意和一元二次不等式能成立可得對于,成立,令,利用導數(shù)討論函數(shù)的單調(diào)性,即可求出.【詳解】存在,不等式成立,則,能成立,即對于,成立,令,,則,令,所以當,單調(diào)遞增,當,單調(diào)遞減,又,所以f(x)>-3,所以.故選:C3、B【解析】①③可以通過分析奇偶性和結(jié)合圖象證明出符合要求,②④可以舉出反例.【詳解】是奇函數(shù),且與圓O的兩交點坐標為,能夠?qū)AO的周長和面積同時等分為兩個部分,故符合題意,①正確;同理函數(shù)是圓O的一個太極函數(shù),③正確;例如,是偶函數(shù),也能將將圓O的周長和面積同時等分為兩個部分,故②錯誤;函數(shù)的圖象關(guān)于原點對稱不是為圓O的太極函數(shù)的充要條件,例如為奇函數(shù),但不滿足將圓O的周長和面積同時等分為兩個部分,所以④錯誤;故選:B4、C【解析】首先畫出可行域,找到最優(yōu)解,得到關(guān)系式作為條件,再去求的最小值.【詳解】畫出的可行域,如下圖:由得由得;由得;目標函數(shù)取最大值時必過N點,則則(當且僅當時等號成立)故選:C5、B【解析】設(shè)出l1的方程為,與拋物線聯(lián)立后得到兩根之和,兩根之積,用弦長公式表達出,同理表達出,利用基本不等式求出的最小值.【詳解】拋物線C:y2=4x的焦點F為,直線l1的方程為,則聯(lián)立后得到,設(shè),,,則,同理設(shè)可得:,因為|k1·k2|=2,所以,當且僅當,即或時,等號成立,故選:B6、D【解析】先利用已知一元二次不等式的解集求得參數(shù),再代入所求不等式,利用分式大于零,則分子分母同號,列不等式計算即得結(jié)果.【詳解】不等式解集為,即的二根是1和2,利用根和系數(shù)的關(guān)系可知,故不等式即轉(zhuǎn)化成,即,等價于或者,解得或,或者.故解集為,或,或.故選:D.【點睛】分式不等式的解法:(1)先化簡成右邊為零的形式(或),等價于一元二次不等式(或)再求解即可;(2)先化簡成右邊為零的形式(或),再利用分子分母同號(或者異號),列不等式組求解即可.7、D【解析】設(shè),則,.所以當時,的最小值為.故選D.8、B【解析】由,將轉(zhuǎn)化為表示,結(jié)合,即可求解.【詳解】,.故選:B.【點睛】本題考查等差數(shù)列基本量的計算,屬于基礎(chǔ)題.9、D【解析】按空間向量的坐標運算法則運算即可.【詳解】.故選:D.10、D【解析】設(shè)切點,點,聯(lián)立直線的方程和拋物線C的準線方程可得,將問題轉(zhuǎn)化為對任意點恒成立,可得,解出,從而求出答案【詳解】設(shè)切點,點由題意,拋物線C的準線,且由,得,則直線的方程為,即,聯(lián)立令,得由題意知,對任意點恒成立,也就是對任意點恒成立因為,,則,即對任意實數(shù)恒成立,所以,即,所以,故選:D【點睛】一般表示拋物線的切線方程時可將拋物線方程轉(zhuǎn)化為函數(shù)解析式,可利用導數(shù)的幾何意義求解切線斜率,再代入計算.11、D【解析】求出直線的斜率,利用斜截式可得出直線的方程.【詳解】直線的斜率為,由題意可知,所求直線的方程為.故選:D.12、C【解析】利用正弦函數(shù)和常數(shù)導數(shù)公式,結(jié)合代入法進行求解即可.【詳解】因為,所以,所以,,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、29【解析】根據(jù)給定信息利用系統(tǒng)抽樣的特征直接計算作答.【詳解】因系統(tǒng)抽樣是等距離抽樣,依題意,相鄰兩個編號相距,所以第四位的編號是.故答案為:2914、##【解析】結(jié)合橢圓的定義求得正確答案.【詳解】依題意,橢圓方程為,所以,所以是橢圓的右焦點,設(shè)左焦點為,根據(jù)橢圓的定義可知,,所以的最大值為.故答案為:15、【解析】先求出直線傾斜角,從而可求得直線的傾斜角,則可求出直線的斜率,進而可求出直線的方程【詳解】因為直線的斜率為,所以直線的傾斜角為,所以直線的傾斜角為,所以直線的斜率為,因為直線經(jīng)過,所以直線的方程為,即,故答案為:16、【解析】根據(jù)導數(shù)的幾何意義可得,根據(jù)切點在切線上可得.【詳解】因為切線的斜率為,所以,又切點在切線上,所以,所以,所以.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)連接,設(shè)與相交于點,連接MN,利用余弦定理可求得,,的長度,進而得到,又,由此可得平面,最后利用面面垂直的判定定理即可得證;(2)建立恰當空間直角坐標系,求出兩個平面的法向量,然后利用向量法求解二面角的余弦值,從而即可得答案【小問1詳解】證明:連接,設(shè)與相交于點,連接MN,平面,在平面內(nèi),平面平面,,,,在中,由余弦定理可得,,,又在中,,由余弦定理可得,,,故,又平面,在平面內(nèi),,又,平面,又平面,平面平面;【小問2詳解】解:由(1)可知直線,,兩兩互相垂直,所以以點為坐標原點,建立如圖所示的空間直角坐標系,則,所以,,設(shè)平面的一個法向量為,則,可??;設(shè)平面的一個法向量為,則,可取,,平面與平面所成二面角的正弦值為18、(1),(2)2【解析】(1)消參數(shù)即可得曲線的普通方程,利用極坐標方程與直角坐標方程之間的轉(zhuǎn)化關(guān)系式,從而曲線的直角坐標方程;(2)將的參數(shù)方程代入的直角坐標方程,得關(guān)于的一元二次方程,由韋達定理得,即可得的值.【小問1詳解】由,消去參數(shù),得,即,所以曲線的普通方程為.由,得,即,所以曲線的直角坐標方程為【小問2詳解】將代入,整理得,則,令方程的兩個根為由韋達定理得,所以.19、(1);(2)最大值為,最小值為.【解析】(1)由題得①,②,解方程組即得解;(2)令解得或,再列表得解.【小問1詳解】解:求導得,因為在出的切線斜率為,則,即①因為時,有極值,則.即②由①②聯(lián)立得,所以.【小問2詳解】解:由(1),令解得或,列表如下:極大值極小值所以,在[-3,2]上的最大值為,最小值為.20、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)已知條件求,利用等差數(shù)列的通項公式可求得數(shù)列的通項公式.(2)求得,利用裂項相消法即可求得.【小問1詳解】設(shè)等差數(shù)列的公差為,由,解得,所以,故數(shù)列的通項公式;【小問2詳解】由(1)得:,所以,所以.21、(1)(2)(3)【解析】(1)以為軸,為軸,軸與垂直,建立如圖所示的空間直角坐標系,寫出各點坐標,設(shè),,由空間向量法求二面角,從而求得,得長;(2)由空間向量法求異面直線所成的角;(3)由空間向量法求線面角【小問1詳解】以為軸,為軸,軸與垂直,由于菱形中,軸是的中垂線,建立如圖坐標系,則,,,設(shè),,,,設(shè)平面一個法向量為,則,令,則,,即,平面的一個法向量是,因為二面角余弦值為.所以,(負值舍去)所以;【小問2詳解】由(1),,,,所以異面直線BF與PA所成角的余弦值為【小問3詳解】由(1)平面的一個法向量為,又,,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論