版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
河北省唐山市樂亭一中2023年高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的定義域?yàn)?,其?dǎo)函數(shù)的圖像如圖所示,則函數(shù)極值點(diǎn)的個(gè)數(shù)為()A.2 B.3C.4 D.52.已知函數(shù),則()A. B.0C. D.13.已知雙曲線C的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.4.焦點(diǎn)為的拋物線標(biāo)準(zhǔn)方程是()A. B.C. D.5.若函數(shù)的導(dǎo)函數(shù)在區(qū)間上是減函數(shù),則函數(shù)在區(qū)間上的圖象可能是()A. B.C. D.6.在各項(xiàng)均為正數(shù)的等比數(shù)列中,若,則()A.6 B.12C.56 D.787.已知,則在方向上的投影為()A. B.C. D.8.已知函數(shù)只有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A B.C. D.9.已知直線l與圓交于A,B兩點(diǎn),點(diǎn)滿足,若AB的中點(diǎn)為M,則的最大值為()A. B.C. D.10.命題“存在,”的否定是()A.存在, B.存在,C.對任意, D.對任意,11.已知等比數(shù)列的前項(xiàng)和為,若公比,則=()A. B.C. D.12.已知拋物線上一點(diǎn)的縱坐標(biāo)為4,則點(diǎn)到拋物線焦點(diǎn)的距離為A.2 B.3C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.復(fù)數(shù)的共軛復(fù)數(shù)是__________14.直線l過拋物線的焦點(diǎn)F,與拋物線交于A,B兩點(diǎn),若,則直線l的斜率為______15.在等比數(shù)列中,,,若數(shù)列滿足,則數(shù)列的前項(xiàng)和為________16.命題“任意,”為真命題,則實(shí)數(shù)a的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點(diǎn)A(0,-2),橢圓E:(a>b>0)的離心率為,F(xiàn)是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn).(1)求E的方程;(2)設(shè)過點(diǎn)A的動(dòng)直線l與E相交于P,Q兩點(diǎn).當(dāng)△OPQ的面積最大時(shí),求l的方程.18.(12分)已知橢圓的離心率為,且經(jīng)過點(diǎn).(1)求橢圓的方程;(2)經(jīng)過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),,為坐標(biāo)原點(diǎn),若的面積為,求直線的方程.19.(12分)(1)求焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程;(2)求經(jīng)過點(diǎn)的拋物線的標(biāo)準(zhǔn)方程;20.(12分)已知橢圓的左、右焦點(diǎn)分別是,,離心率為,過且垂直于x軸的直線被橢圓C截得的線段長為1(1)求橢圓C方程;(2)設(shè)點(diǎn)P在直線上,過點(diǎn)P的兩條直線分別交曲線C于A,B兩點(diǎn)和M,N兩點(diǎn),且,求直線AB的斜率與直線MN的斜率之和21.(12分)已知數(shù)列是等差數(shù)列,為其前n項(xiàng)和,,(1)求的通項(xiàng)公式;(2)若,求證:為等比數(shù)列22.(10分)如圖所示,四棱錐的底面為直角梯形,,,,,底面,為的中點(diǎn)(1)求證:平面平面;(2)求點(diǎn)到平面的距離
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)給定的導(dǎo)函數(shù)的圖象,結(jié)合函數(shù)的極值的定義,即可求解.【詳解】如圖所示,設(shè)導(dǎo)函數(shù)的圖象與軸的交點(diǎn)分別為,根據(jù)函數(shù)的極值的定義可知在該點(diǎn)處的左右兩側(cè)的導(dǎo)數(shù)符號(hào)相反,可得為函數(shù)的極大值點(diǎn),為函數(shù)的極小值點(diǎn),所以函數(shù)極值點(diǎn)的個(gè)數(shù)為4個(gè).故選:C.2、B【解析】先求導(dǎo),再代入求值.詳解】,所以.故選:B3、B【解析】根據(jù)雙曲線的離心率,求出即可得到結(jié)論【詳解】∵雙曲線的離心率是,∴,即1+,即1,則,即雙曲線的漸近線方程為,故選:B4、D【解析】設(shè)拋物線的方程為,根據(jù)題意,得到,即可求解.【詳解】由題意,設(shè)拋物線的方程為,因?yàn)閽佄锞€的焦點(diǎn)為,可得,解得,所以拋物線的方程為.故選:D.5、A【解析】根據(jù)導(dǎo)數(shù)概念和幾何意義判斷【詳解】由題意得,圖象上某點(diǎn)處的切線斜率隨增大而減小,滿足要求的只有A故選:A6、D【解析】由等比數(shù)列的性質(zhì)直接求得.【詳解】在等比數(shù)列中,由等比數(shù)列的性質(zhì)可得:由,解得:;由可得:,所以.故選:D7、C【解析】利用向量數(shù)量積的幾何意義即得【詳解】,故在方向上的投影為:故選:C8、B【解析】將題目轉(zhuǎn)化為函數(shù)的圖像與的圖像只有一個(gè)交點(diǎn),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,作出圖像,利用數(shù)形結(jié)合求出的取值范圍.【詳解】由函數(shù)只有一個(gè)零點(diǎn),等價(jià)于函數(shù)的圖像與的圖像只有一個(gè)交點(diǎn),,求導(dǎo),令,得當(dāng)時(shí),,函數(shù)在上單調(diào)遞減;當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;當(dāng)時(shí),,函數(shù)在上單調(diào)遞減;故當(dāng)時(shí),函數(shù)取得極小值;當(dāng)時(shí),函數(shù)取得極大值;作出函數(shù)圖像,如圖所示,由圖可知,實(shí)數(shù)的取值范圍是故選:B【點(diǎn)睛】方法點(diǎn)睛:已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進(jìn)而構(gòu)造兩個(gè)函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.9、A【解析】設(shè),,則、,由點(diǎn)在圓上可得,再由向量垂直的坐標(biāo)表示可得,進(jìn)而可得M的軌跡為圓,即可求的最大值.【詳解】設(shè),中點(diǎn),則,,又,,則,所以,又,則,而,,所以,即,綜上,,整理得,即為M的軌跡方程,所以在圓心為,半徑為的圓上,則.故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:由點(diǎn)圓位置、中點(diǎn)坐標(biāo)公式及向量垂直的坐標(biāo)表示得到關(guān)于的軌跡方程.10、D【解析】特稱命題的否定:將存在改任意并否定原結(jié)論,即可知正確答案.【詳解】由特稱命題的否定為全稱命題,知:原命題的否定為:對任意,.故選:D11、A【解析】根據(jù)題意,由等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式直接計(jì)算即可.【詳解】由已知可得.故選:A.12、D【解析】拋物線焦點(diǎn)在軸上,開口向上,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,因?yàn)辄c(diǎn)A的縱坐標(biāo)為4,所以點(diǎn)A到拋物線準(zhǔn)線的距離為,因?yàn)閽佄锞€上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,所以點(diǎn)A與拋物線焦點(diǎn)的距離為5.考點(diǎn):本小題主要考查應(yīng)用拋物線定義和拋物線上點(diǎn)的性質(zhì)拋物線上的點(diǎn)到焦點(diǎn)的距離,考查學(xué)生的運(yùn)算求解能力.點(diǎn)評:拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,這條性質(zhì)在解題時(shí)經(jīng)常用到,可以簡化運(yùn)算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用復(fù)數(shù)除法化簡,由共軛復(fù)數(shù)的概念寫出即可.【詳解】,∴.故答案為:14、【解析】如圖,設(shè),兩點(diǎn)的拋物線的準(zhǔn)線上的射影分別為,,過作的垂線,在三角形中,等于直線的傾斜角,其正切值即為值,利用在直角三角形中,求得,從而得出直線的斜率【詳解】解:如圖,當(dāng)在第一象限時(shí),設(shè),兩點(diǎn)的拋物線的準(zhǔn)線上的射影分別為,,過作的垂線,在三角形中,等于直線的傾斜角,其正切值即為值,由拋物線的定義可知:設(shè),則,,,在直角三角形中,,所以,則直線的斜率;當(dāng)在第四象限時(shí),同理可得,直線的斜率,綜上可得直線l的斜率為;故答案為:15、【解析】求出等比數(shù)列的通項(xiàng)公式,可得出的通項(xiàng)公式,推導(dǎo)出數(shù)列為等差數(shù)列,利用等差數(shù)列的求和公式即可得解.【詳解】設(shè)等比數(shù)列的公比為,則,則,所以,,則,所以,數(shù)列為等差數(shù)列,故數(shù)列的前項(xiàng)和為.故答案為:.16、【解析】分離常數(shù),將問題轉(zhuǎn)化求函數(shù)最值問題.【詳解】任意,恒成立恒成立,故只需,記,,易知,所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】設(shè)出,由直線的斜率為求得,結(jié)合離心率求得,再由隱含條件求得,即可求橢圓方程;(2)點(diǎn)軸時(shí),不合題意;當(dāng)直線斜率存在時(shí),設(shè)直線,聯(lián)立直線方程和橢圓方程,由判別式大于零求得的范圍,再由弦長公式求得,由點(diǎn)到直線的距離公式求得到的距離,代入三角形面積公式,化簡后換元,利用基本不等式求得最值,進(jìn)一步求出值,則直線方程可求.試題解析:(1)設(shè),因?yàn)橹本€的斜率為,所以,.又解得,所以橢圓的方程為.(2)解:設(shè)由題意可設(shè)直線的方程為:,聯(lián)立消去得,當(dāng),所以,即或時(shí).所以點(diǎn)到直線的距離所以,設(shè),則,,當(dāng)且僅當(dāng),即,解得時(shí)取等號(hào),滿足所以的面積最大時(shí)直線的方程為:或.【方法點(diǎn)晴】本題主要考查待定系數(shù)法求橢圓方程及圓錐曲線求最值,屬于難題.解決圓錐曲線中的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將圓錐曲線中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法,本題(2)就是用的這種思路,利用均值不等式法求三角形最值的.18、(1);(2)或.【解析】(1)由離心率公式、將點(diǎn)代入橢圓方程得出橢圓的方程;(2)聯(lián)立橢圓和直線的方程,由判別式得出的范圍,再由韋達(dá)定理結(jié)合三角形面積公式得出,求出的值得出直線的方程.【詳解】解:(1)因?yàn)闄E圓的離心率為,所以.①又因?yàn)闄E圓經(jīng)過點(diǎn),所以有.②聯(lián)立①②可得,,,所以橢圓的方程為.(2)由題意可知,直線的斜率存在,設(shè)直線的方程為.由消去整理得,.因?yàn)橹本€與橢圓交于不同兩點(diǎn),所以,即,所以設(shè),,則,.由題意得,面積,即.因?yàn)榈拿娣e為,所以,即.化簡得,,即,解得或,均滿足,所以或.所以直線的方程為或.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:在第二問中,關(guān)鍵是由韋達(dá)定理建立的關(guān)系,結(jié)合三角形面積公式求出斜率,得出直線的方程.19、(1);(2)或.【解析】(1)由虛軸長是12求出半虛軸b,根據(jù)雙曲線的性質(zhì)c2=a2+b2以及離心率,求出a2,寫出雙曲線的標(biāo)準(zhǔn)方程;(2)設(shè)出拋物線方程,利用經(jīng)過,求出拋物線中的參數(shù),即可得到拋物線方程【詳解】焦點(diǎn)在x軸上,設(shè)所求雙曲線的方程為=1(a>0,b>0)由題意,得解得b=6,解得,所以焦點(diǎn)在x軸上的雙曲線的方程為(2)由于點(diǎn)P在第三象限,所以拋物線方程可設(shè)為:或(p>0)當(dāng)方程為,將點(diǎn)代入得16=4p,即p=4,拋物線方程為:;當(dāng)方程為,將點(diǎn)代入得4=8p,即p=,拋物線方程為:;20、(1)(2)0【解析】(1)由條件得和,再結(jié)合可求解;(2)設(shè)直線AB的方程為:,與橢圓聯(lián)立,得到,同理得,再根據(jù)題中的條件化簡整理可求解.【小問1詳解】因?yàn)闄E圓的離心率為,所以,所以①又因?yàn)檫^且垂直于x軸的直線被橢圓C截得的線段長為1,所以②,由①②可知,所以,,所以橢圓C的方程為【小問2詳解】因?yàn)辄c(diǎn)P在直線上,所以設(shè)點(diǎn),由題可知,直線AB的斜率與直線MN的斜率都存在所以直線AB的方程為:,即,直線MN的方程為:,即,設(shè),,,,所以,消去y可得,,整理可得,且所以,,又因?yàn)?,,所以,同理可得,又因?yàn)?,所以,又因?yàn)椋?,,都是長度,所以,所以,整理可得,又因?yàn)?,所以,所以直線AB的斜率與直線MN的斜率之和為021、(1)(2)證明見解析【解析】(1)由已知條件列出關(guān)于的方程組,解方程組求出,從而可求出的通項(xiàng)公式,(2)由(1)可得,然后利用等比數(shù)列的定義證明即可【小問1詳解】設(shè)數(shù)列的公差為,則由,,得,解得,所以【小問2詳解】證明:由(1)得,所以,()所以數(shù)列是以9為公比,27為首項(xiàng)的等比數(shù)列22、(1)證明見解析(2)【解析】(1)設(shè)與交點(diǎn)為,延長交的延長線于點(diǎn),進(jìn)而根據(jù)證明,再結(jié)合底面得,進(jìn)而證明平面即可證明結(jié)論;(2)由得點(diǎn)到平面的距離等于
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2010年高考語文試卷(新課標(biāo))(解析卷)
- 遙感技術(shù)在災(zāi)害評估-洞察分析
- 宇宙磁場的起源與演化-洞察分析
- 文學(xué)創(chuàng)作與產(chǎn)業(yè)-洞察分析
- 虛擬現(xiàn)實(shí)廣告用戶接受度調(diào)查-洞察分析
- 網(wǎng)絡(luò)安全法律法規(guī)-第18篇-洞察分析
- 音頻電商平臺(tái)發(fā)展研究-洞察分析
- 網(wǎng)絡(luò)營銷的用戶體驗(yàn)提升-洞察分析
- 藥物制劑崩解動(dòng)力學(xué)-洞察分析
- 投行風(fēng)險(xiǎn)管理案例剖析-洞察分析
- 2024年7月國家開放大學(xué)法學(xué)本科《知識(shí)產(chǎn)權(quán)法》期末考試試題及答案
- 2024年河南省公務(wù)員錄用考試《行測》試題及答案解析
- (2024年)剪映入門教程課件
- 四年級(jí)上冊道法知識(shí)點(diǎn)匯總
- 資產(chǎn)負(fù)債表、業(yè)務(wù)活動(dòng)表(民非)
- 人教版八年級(jí)下冊英語單詞表(按單元排序)全冊(附音標(biāo)和解釋)
- 鋁合金鑄件成本核算
- 鍋爐超溫超壓考核管理辦法
- 供應(yīng)鏈管理中的分銷環(huán)節(jié)培訓(xùn)課件
- JGJ_T491-2021裝配式內(nèi)裝修技術(shù)標(biāo)準(zhǔn)(高清-最新版)
- 最新中石油帶壓作業(yè)技術(shù)規(guī)程
評論
0/150
提交評論