河南省豫南市級示范性高中2023年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第1頁
河南省豫南市級示范性高中2023年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第2頁
河南省豫南市級示范性高中2023年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第3頁
河南省豫南市級示范性高中2023年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第4頁
河南省豫南市級示范性高中2023年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河南省豫南市級示范性高中2023年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.觀察:則第行的值為()A. B.C. D.2.已知等差數(shù)列中的、是函數(shù)的兩個(gè)不同的極值點(diǎn),則的值為()A. B.1C.2 D.33.已知離散型隨機(jī)變量X的分布列如下:X123P則數(shù)學(xué)期望()A. B.C.1 D.24.若數(shù)列的前項(xiàng)和,則此數(shù)列是()A.等差數(shù)列 B.等比數(shù)列C.等差數(shù)列或等比數(shù)列 D.以上說法均不對5.過點(diǎn)作圓的切線,則切線的方程為()A. B.C.或 D.或6.函數(shù),的值域?yàn)椋ǎ〢. B.C. D.7.設(shè)正方體的棱長為,則點(diǎn)到平面的距離是()A. B.C. D.8.已知定義在R上的函數(shù)滿足,且有,則的解集為()A. B.C. D.9.橢圓的左、右焦點(diǎn)分別為、,上存在兩點(diǎn)、滿足,,則的離心率為()A. B.C. D.10.由倫敦著名建筑事務(wù)所SteynStudio設(shè)計(jì)的南非雙曲線大教堂驚艷世界,該建筑是數(shù)學(xué)與建筑完美結(jié)合造就的藝術(shù)品,若將如圖所示的大教堂外形弧線的一段近似看成雙曲線下支的一部分,離心率為,則該雙曲線的漸近線方程為()A. B.C. D.11.拋物線的焦點(diǎn)到直線的距離()A. B.C.1 D.212.若曲線表示圓,則m的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正四棱柱的高為底面邊長的倍,則其體對角線與底面所成角的大小為_________.14.若拋物線:上的一點(diǎn)到它的焦點(diǎn)的距離為3,則__.15.若圓被直線平分,則值為__________16.如圖所示,二面角為,是棱上的兩點(diǎn),分別在半平面內(nèi),且,,,,,則的長______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知(1)若函數(shù)在上有極值,求實(shí)數(shù)a的取值范圍;(2)已知方程有兩個(gè)不等實(shí)根,證明:(注:是自然對數(shù)的底數(shù))18.(12分)已知數(shù)列的前n項(xiàng)和為,,且.(1)求數(shù)列的通項(xiàng)公式;(2)在與之間插入n個(gè)數(shù),使這個(gè)數(shù)組成一個(gè)公差為的等差數(shù)列,求證:.19.(12分)已知點(diǎn)和直線.(1)求以為圓心,且與直線相切的圓的方程;(2)過直線上一點(diǎn)作圓的切線,其中為切點(diǎn),求四邊形PAMB的面積的最小值.20.(12分)已知橢圓,其上頂點(diǎn)與左右焦點(diǎn)圍成的是面積為的正三角形.(1)求橢圓的方程;(2)過橢圓的右焦點(diǎn)的直線(的斜率存在)交橢圓于兩點(diǎn),弦的垂直平分線交軸于點(diǎn),問:是否是定值?若是,求出定值:若不是,說明理由.21.(12分)已知數(shù)列的首項(xiàng),且滿足.(1)求證:數(shù)列為等差數(shù)列;(2)設(shè),求數(shù)列的前項(xiàng)和.22.(10分)在空間直角坐標(biāo)系Oxyz中,O為原點(diǎn),已知點(diǎn),,,設(shè)向量,.(1)求與夾角的余弦值;(2)若與互相垂直,求實(shí)數(shù)k的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)數(shù)陣可知第行為,利用等差數(shù)列求和,即可得到答案;【詳解】根據(jù)數(shù)陣可知第行為,,故選:B2、C【解析】對求導(dǎo),由題設(shè)及根與系數(shù)關(guān)系可得,再根據(jù)等差中項(xiàng)的性質(zhì)求,最后應(yīng)用對數(shù)運(yùn)算求值即可.【詳解】由題設(shè),,由、是的兩個(gè)不同的極值點(diǎn),所以,又是等差數(shù)列,所以,即,故.故選:C3、D【解析】利用已知條件,結(jié)合期望公式求解即可【詳解】解:由題意可知:故選:D4、D【解析】利用數(shù)列通項(xiàng)與前n項(xiàng)和的關(guān)系和等差數(shù)列及等比數(shù)列的定義判斷.【詳解】當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,所以是等差數(shù)列;當(dāng)時(shí),為非等差數(shù)列,非等比數(shù)列’當(dāng)時(shí),,所以是等比數(shù)列,故選:D5、C【解析】設(shè)切線的方程為,然后利用圓心到直線的距離等于半徑建立方程求解即可.【詳解】圓的圓心為原點(diǎn),半徑為1,當(dāng)切線的斜率不存在時(shí),即直線的方程為,不與圓相切,當(dāng)切線的斜率存在時(shí),設(shè)切線的方程為,即所以,解得或所以切線的方程為或故選:C6、A【解析】利用基本不等式可得,進(jìn)而可得,即求.【詳解】∵,∴,當(dāng)且僅當(dāng),即時(shí)取等號,∴,,∴.故選:A.7、D【解析】建立空間直角坐標(biāo)系,根據(jù)空間向量所學(xué)點(diǎn)到面的距離公式求解即可.【詳解】建立如下圖所示空間直角坐標(biāo)系,以為坐標(biāo)原點(diǎn),所在直線為軸,所在直線為軸,所在直線為軸.因?yàn)檎襟w的邊長為4,所以,,,,,所以,,,設(shè)平面的法向量,所以,,即,設(shè),所以,,即,設(shè)點(diǎn)到平面的距離為,所以,故選:D.8、A【解析】構(gòu)造,應(yīng)用導(dǎo)數(shù)及已知條件判斷的單調(diào)性,而題設(shè)不等式等價(jià)于即可得解.【詳解】設(shè),則,∴R上單調(diào)遞增.又,則.∵等價(jià)于,即,∴,即所求不等式的解集為.故選:A.9、A【解析】作點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn),連接、、、,推導(dǎo)出、、三點(diǎn)共線,利用橢圓的定義可求得、、、,推導(dǎo)出,利用勾股定理可得出關(guān)于、的齊次等式,即可求得該橢圓的離心率.【詳解】作點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn),連接、、、,則為、的中點(diǎn),故四邊形為平行四邊形,故且,則,所以,,故、、三點(diǎn)共線,由橢圓定義,,有,所以,則,再由橢圓定義,有,因?yàn)?,所以,在中,即,所以,離心率故選:A.10、B【解析】求出的值,可得出雙曲線的漸近線方程.【詳解】由已知可得,因此,該雙曲線的漸近線方程為.故選:B.11、B【解析】由拋物線可得焦點(diǎn)坐標(biāo),結(jié)合點(diǎn)到直線的距離公式,即可求解.【詳解】由拋物線可得焦點(diǎn)坐標(biāo)為,根據(jù)點(diǎn)到直線的距離公式,可得,即拋物線的焦點(diǎn)到直線的距離為.故選:B.12、C【解析】按照圓的一般方程滿足的條件求解即可.【詳解】或.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】如圖所示,其體對角線與底面所成角為,解三角形即得解.【詳解】解:如圖所示,設(shè),所以.由題得平面,則其體對角線與底面所成角為,因?yàn)?所以.故答案為:14、【解析】通過拋物線的定義列式求解【詳解】根據(jù)拋物線的定義知,所以.故答案為:15、;【解析】求出圓的圓心坐標(biāo),代入直線方程求解即可【詳解】解:的圓心圓被直線平分,可知直線經(jīng)過圓的圓心,可得解得;故答案為:1【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,屬于基礎(chǔ)題16、【解析】推導(dǎo)出,從而,結(jié)合,,,能求出的長【詳解】二面角為,是棱上的兩點(diǎn),分別在半平面、內(nèi),且所以,所以,,,的長故答案為【點(diǎn)睛】本題主要考查空間向量的運(yùn)算法則以及數(shù)量積的運(yùn)算法則,意在考查靈活應(yīng)用所學(xué)知識解答問題的能力,是中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析.【解析】(1)利用導(dǎo)數(shù)判斷出在上單增,在上單減,在處取得唯一的極值,列不等式組,即可求出實(shí)數(shù)a的取值范圍;(2)記函數(shù),把證明,轉(zhuǎn)化為只需證明,用分析法證明即可.【小問1詳解】,定義域?yàn)椋?令,解得:;令,解得:所以在上單增,在上單減,在處取得唯一的極值.要使函數(shù)在上有極值,只需,解得:,即實(shí)數(shù)a的取值范圍為.【小問2詳解】記函數(shù).則函數(shù)有兩個(gè)不等實(shí)根.因?yàn)?,,兩式相減得,,兩式相加得,.因?yàn)?,所以要證,只需證明,只需證明,只需證明,.證.設(shè),只需證明.記,則,所以在上2單增,所以,所以,即,所以.即證.【點(diǎn)睛】導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識點(diǎn),對導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個(gè)角度進(jìn)行:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系;(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù);(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題;(4)利用導(dǎo)數(shù)證明不等式18、(1)(2)證明見解析【解析】(1)根據(jù)作差即可得到是以為首項(xiàng),為公比的等比數(shù)列,從而得到數(shù)列的通項(xiàng)公式;(2)由(1)可知,,根據(jù)等差數(shù)列的通項(xiàng)公式得到,即可得到,再令,利用錯(cuò)位相減法求出,即可得證;【小問1詳解】解:因?yàn)椋?,?dāng)時(shí),則,所以,當(dāng)時(shí),,則,即,所以是以為首項(xiàng),為公比的等比數(shù)列,所以;【小問2詳解】解:由(1)可知,,因?yàn)?,所以,所以,令,則,所以,所以,即,所以,即;19、(1)(2)【解析】(1)利用到直線的距離求得半徑,由此求得圓的方程.(2)結(jié)合到直線的距離來求得四邊形面積的最小值.【小問1詳解】圓的半徑,圓的方程為.【小問2詳解】由四邊形的面積知,當(dāng)時(shí),面積最小.此時(shí)...20、(1);(2)是定值,定值為4【解析】(1)根據(jù)正三角形性質(zhì)與面積可求得即可求得方程;(2)當(dāng)直線斜率不為0時(shí),設(shè)其方程代入橢圓方程利用韋達(dá)定理求得兩根關(guān)系式,進(jìn)而求得的表達(dá)式,最后求比值即可;當(dāng)直線斜率為0時(shí)直接求解即可【詳解】(1)為正三角形,,可得,且,∴橢圓的方程為.(2)分以下兩種情況討論:①當(dāng)直線斜率不為0時(shí),設(shè)其方程為,且,聯(lián)立,消去得,則,且,∴弦的中點(diǎn)的坐標(biāo)為,則弦的垂直平分線為,令,得,,又,;②當(dāng)直線斜率為0時(shí),則,,則.綜合①②得是定值且為4【點(diǎn)睛】方法點(diǎn)睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個(gè)值與變量無關(guān)(2)直接推理、計(jì)算,并在計(jì)算推理的過程中消去變量,從而得到定值21、(1)證明見解析(2)【解析】(1)化簡

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論