




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
海南省北師大萬寧附中2023-2024學年高二上數(shù)學期末質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等差數(shù)列{an}中,a1=1,,則a7=()A.13 B.14C.15 D.162.在平面幾何中,將完全覆蓋某平面圖形且直徑最小的圓,稱為該平面圖形的最小覆蓋圓.如線段的最小覆蓋圓就是以該線段為直徑的圓,銳角三角形的最小覆蓋圓就是該三角形的外接圓.若,,,則的最小覆蓋圓的半徑為()A. B.C. D.3.已知,若對于且都有成立,則實數(shù)的取值范圍是()A. B.C. D.4.設數(shù)列的前項和為,數(shù)列是公比為2的等比數(shù)列,且,則()A.255 B.257C.127 D.1295.已知雙曲線:的右焦點為,過的直線(為常數(shù))與雙曲線在第一象限交于點.若(為原點),則的離心率為()A. B.C. D.56.如圖①所示,將一邊長為1的正方形沿對角線折起,形成三棱錐,其主視圖與俯視圖如圖②所示,則左視圖的面積為()A. B.C. D.7.下列函數(shù)的求導正確的是()A. B.C. D.8.已知橢圓的左焦點是,右焦點是,點P在橢圓上,如果線段的中點在y軸上,那么()A.3:5 B.3:4C.5:3 D.4:39.《周髀算經》中有這樣一個問題,從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣日影長依次成等差數(shù)列,若冬至、大寒、雨水的日影長的和為36.3尺,小寒、驚蟄、立夏的日影長的和為18.3尺,則冬至的日影長為()A4尺 B.8.5尺C.16.1尺 D.18.1尺10.“”是“直線和直線垂直”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件11.已知,,若,則()A.6 B.11C.12 D.2212.參加抗疫的300名醫(yī)務人員,編號為1,2,…,300.為了解這300名醫(yī)務人員的年齡情況,現(xiàn)用系統(tǒng)抽樣的方法從中抽取15名醫(yī)務人員的年齡進行調查.若抽到的第一個編號為6,則抽到的第二個編號為()A.21 B.26C.31 D.36二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的通項公式為,,設是數(shù)列的前n項和,若對任意都成立,則實數(shù)的取值范圍是__________.14.雙曲線的離心率為____15.若橢圓:的長軸長為4,焦距為2,則橢圓的標準方程為______.16.若x,y滿足約束條件,則的最大值為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,,.(1)證明:平面;(2)在線段上是否存在一點,使直線與平面所成角的正弦值等于?18.(12分)如圖,四棱錐中,是邊長為2的正三角形,底面為菱形,且平面平面,,為上一點,滿足.(1)證明:;(2)求二面角的余弦值.19.(12分)已知中,分別為角的對邊,且(1)求;(2)若為邊的中點,,求的面積20.(12分)等差數(shù)列{an}的前n項和記為Sn,且.(1)求數(shù)列{an}的通項公式an(2)記數(shù)列的前n項和為Tn,若,求n的最小值.21.(12分)已知拋物線C:,過點且斜率為k的直線與拋物線C相交于P,Q兩點.(1)設點B在x軸上,分別記直線PB,QB的斜率為.若,求點B的坐標;(2)過拋物線C的焦點F作直線PQ的平行線與拋物線C相交于M,N兩點,求的值.22.(10分)圓錐曲線的方程是.(1)若表示焦點在軸上的橢圓,求的取值范圍;(2)若表示焦點在軸上且焦距為的雙曲線,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用等差數(shù)列的基本量,即可求解.【詳解】設等差數(shù)列的公差為,,解得:,則.故選:A2、C【解析】根據(jù)新定義只需求銳角三角形外接圓的方程即可得解.【詳解】,,,為銳角三角形,的外接圓就是它的最小覆蓋圓,設外接圓方程為,則解得的最小覆蓋圓方程為,即,的最小覆蓋圓的半徑為.故選:C3、D【解析】根據(jù)題意轉化為對于且時,都有恒成立,構造函數(shù),轉化為時,恒成立,求得的導數(shù),轉化為在上恒成立,即可求解.【詳解】由題意,對于且都有成立,不妨設,可得恒成立,即對于且時,都有恒成立,構造函數(shù),可轉化為,函數(shù)為單調遞增函數(shù),所以當時,恒成立,又由,所以在上恒成立,即在上恒成立,又由,所以,即實數(shù)取值范圍為.故選:D4、C【解析】由題設可得,再由即可求值.【詳解】由數(shù)列是公比為2的等比數(shù)列,且,∴,即,∴.故選:C.5、D【解析】取雙曲線的左焦點,連接,計算可得,即.設,則,,解得:,利用勾股定理計算可得,即可得出結果.【詳解】取雙曲線的左焦點,連接,,則因為,所以,即.,.設,則,,解得:.,,..故選:D6、A【解析】由視圖確定該幾何體的特征,即可得解.【詳解】由主視圖可以看出,A點在面上的投影為的中點,由俯視圖可以看出C點在面上的投影為的中點,所以其左視圖為如圖所示的等腰直角三角形,直角邊長為,于是左視圖的面積為故選:A.7、B【解析】對各個選項進行導數(shù)運算驗證即可.【詳解】,故A錯誤;,故B正確;,故C錯誤;,故D錯誤.故選:B8、A【解析】求出橢圓的焦點坐標,再根據(jù)點在橢圓上,線段的中點在軸上,求得點坐標,進而計算,從而求解.【詳解】由橢圓方程可得:,設點坐標為,線段的中點為,因為線段中點在軸上,所以,即,代入橢圓方程得或,不妨取,則,所以,故選:A.9、C【解析】設等差數(shù)列,用基本量代換列方程組,即可求解.【詳解】由題意,從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣的日影長依次成等差數(shù)列,記為數(shù)列,公差為d,則有,即,解得:,即冬至的日影長為16.1尺.故選:C10、A【解析】根據(jù)直線垂直求出值即可得答案.【詳解】解:若直線和直線垂直,則,解得或,則“”是“直線和直線垂直”的充分非必要條件.故選:A.11、C【解析】根據(jù)遞推關系式計算即可求出結果.【詳解】因為,,,則,,,故選:C.12、B【解析】將300個數(shù)編號:001,002,003,,3000,再平均分為15個小組,然后按系統(tǒng)抽樣方法得解.【詳解】將300個數(shù)編號:001,002,003,,3000,再平均分為15個小組,則第一編號為006,第二個編號為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】化簡數(shù)列將問題轉化為不等式恒成立問題,再對n分奇數(shù)和偶數(shù)進行討論,分別求解出的取值范圍,最后綜合得出結果.【詳解】根據(jù)題意,,.①當n是奇數(shù)時,,即對任意正奇數(shù)n恒成立,當時,有最小值1,所以.②當n是正偶數(shù)時,,即,又,故對任意正偶數(shù)n都成立,又隨n增大而增大,當時,有最小值,即,綜合①②可知.故答案為:.14、【解析】由題意得:考點:雙曲線離心率15、【解析】由焦距可得c,長軸長得到a,再根據(jù)可得答案.【詳解】因為橢圓的長軸長為4,則,焦距為2,由,得,則橢圓的標準方程為:.故答案為:.16、3【解析】根據(jù)題意,畫出可行域,找出最優(yōu)解,即可求解.【詳解】根據(jù)題意,不等式組所表示的可行域如圖陰影部分,由圖易知,取最大值的最優(yōu)解為,故.故答案為:3三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)詳解解析;(2)存在.【解析】(1)利用勾股定理證得,結合線面垂直的判定定理即可證得結論;(2)以A為原點建立空間直角坐標系,設點,,求得平面的法向量,利用已知條件建立關于的方程,進而得解.【小問1詳解】取中點為,連接,在中,,,,又,,所以,又,,而,所以,又,,,又,,平面.【小問2詳解】以A為坐標原點,以為x軸,為y軸,為z軸建立空間直角坐標系,則,,,,設點,因為點F在線段上,設,,,設平面的法向量為,,,則,令,則,設直線CF與平面所成角為,,解得或(舍去),,此時點F是的三等分點,所以在線段上是存在一點,使直線與平面所成角的正弦值等于.18、(1)證明見解析;(2).【解析】(1)設為中點,連接,根據(jù),證明平面得到答案.(2)以為原點,,,分別為,,軸建立空間直角坐標系,計算各點坐標,計算平面和平面的法向量,根據(jù)向量夾角公式計算得到答案.【詳解】(1)設為中點,連接,,∵,∴,又∵底面四邊形為菱形,,∴為等邊三角形,∴,又∴,,平面,∴平面,而平面,∴.(2)∵平面平面,平面平面,,∴平面以為原點,,,分別為,,軸建立空間直角坐標系,則,,,,,,由,,,即,∴,,,設為平面的法向量,則由,令,得,,∴,設為平面的法向量,則由,令,得,,∴,設二面角的平面角為,則,∴二面角的的余弦值為.【點睛】本題考查了線線垂直,二面角,意在考查學生的計算能力和空間想象能力,建立空間直角坐標系是解題的關鍵.19、(1);(2)【解析】(1)利用正弦定理化邊為角可得,化簡可得,結合,即得解;(2)在中,由余弦定理得,可得,利用面積公式即得解【詳解】(1)中由正弦定理及條件,可得,∵,,∴,∵,∴,或,又∵,∴,∴,,∴(2)為邊的中點,,,得,中,由余弦定理得,∴,∴,∵,∴,20、(1)an=2n(2)100【解析】(1)由等差數(shù)列的通項公式列出方程組求解即可;(2)由裂項相消求和法得出,再由不等式的性質得出n的最小值.【小問1詳解】設等差數(shù)列{an}的公差為d,依題意有解得,所以an=2n.【小問2詳解】由(1)得,則,所以因為,即,解得n>99,所以n的最小值為100.21、(1)(2)【解析】(1)直線的方程為,其中,聯(lián)立直線與拋物線方程,由韋達定理結合已知條件可求得點的坐標;(2)直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅游景區(qū)設施場地租賃合同范本
- 拆遷安置補償房交易合同范本解析
- 環(huán)保項目部分股權轉讓與生態(tài)修復協(xié)議
- 綠色食品采購咨詢及招標代理服務合同
- 餐飲店加盟店區(qū)域保護與市場拓展協(xié)議書
- 成都市區(qū)限價商品房買賣合同范本
- 文化藝術中心停車場租賃服務合同
- 餐飲店服務員服務質量監(jiān)控與勞動合同
- 財務會計勞動合同(財務審計)
- 波形鋼腹板箱梁拼裝技術專題
- 一規(guī)程四細則學習題庫
- 工地試驗室化學廢液處理方案
- 2024年網絡安全知識競賽考試題庫500題(含答案)
- (大華)監(jiān)控系統(tǒng)工程設計方案
- 地質勘查行業(yè)數(shù)字化轉型
- 商家拒絕調解協(xié)議書
- 腦卒中患者深靜脈靜脈血栓預防
- 標書技術方案應答
- 秒懂藝術那些事智慧樹知到期末考試答案章節(jié)答案2024年商丘師范學院
- 初級美發(fā)師題庫
- 銀川市西夏區(qū)六年級下冊數(shù)學期末測試卷附答案
評論
0/150
提交評論